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TECHNICAL MEMORANDUM

The nterrelated concepts of information, entropy, probability, and universal compu-
tation enjoy very wide application It is worth noting, though, that the successful
applications and theorems are mostly restricted to systems having a vast number of
particles or symbols For smaller systems, it is not clear how to quantitfy the informa-
tion/entropy/probability precisely. We argue that these are not just vague, academic
questions, but sometimes definite problems in practice.

Mathematics and computer science allow us to construct any number of inequivalent
probability measures. Even so-called “universal” probability measures can be quite
inequivalent. Deciding which of these best describes the real world is a task for empirical
science. As illustrations we consider the (1) information content of the genome and (2)
a practical “learning from examples” task.

Additional keywords: Universal Turing Machine, Universal Data Compression, Univer-
sal Prior, Algorithmic Complexity, Kolmogorov Complexity, Machine Learning.

1 Introduction

We celebrate the interrelated concepts of “entropy? “information content] “universal computer)
and “probability” as being among the greatest achievements of modern science. Despite (or perhaps
because of) their sacredness, we ought to examine their foundations. Doing so reveals some surprises.
For instance: (1) While there 1s no problem measuring precisely the entropy of a macroscopic system,
the situation 1s not so clear for a microscopic system (2) Certain data-compression schemes are
claimed to be optimal 1n the sense that they work essentially as well as any other, if not better. In
fact, though, compressor “A” might work better than compressor “B” when applied to application
“a” and vice versa when applied to application “b” The performance difference may well disappear
asymptotically when very long data-strings are considered, but the asymptotic performance is not
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generally a good predictor of the typical case. (3) Similarly, certain learning algorithms are claimed
to be optimal in the sense that they work essentially as well as any other, if not better. But once
again, they do so only 1n the limit of infinite amounts of training data, while practical applications
involve distinctly finite amounts of data

The hiterature abounds with implicit and explicit attempts to use computational complexity to derive
“the” unique probability distribution describing everything in the real world. We will argue that
these attempts are misguided. Consider the analogy: in the days of Euclid 1t was thought that
pure mathematics could uncover axioms that describe the geometry of the universe. More modern
mathematics, though, allows us to discuss lots of different geometries. Nowadays nobody thinks that
the metric of real spacetime is uniquely, axiomatically defined by pure mathematics; discovering the
“real” geometry is a task for empirical science.

The analogy to probability theory is this: modern mathematics allows us to discuss lots of different
probability measures. Determining which of these actually describes the real world is not a fit subject
for mathematics, or for abstract computer science.

2 Basic Properties of Algorithmic Complexity

Algorithmic complexity(l: 23] is based on the notion that a long string of symbols exhibiting an
easily-described pattern is not random, while a long string of symbols not exhibiting any identi-
fiable pattern ought to be called random. (This notion of “randomness” also goes by the name
of “complexity] and the opposite of “complex” is “simple”; for a review, see 4 .) Extreme cases
include

(a) the string consisting of a million zeros, which is very, very simple;

(b) the string consisting of “01” repeated 500,000 times, which is almost as simple; and

(c) the string generated by tossing a coin a million times, which is quite complex.
The crucial intermediate case is exemplified by

(d) the string representing the first million digits of 7.
The digits individually would pass almost any test for randomness and independence, but in some
sense this is hardly more complex than string (a) or (b), since each digit is completely predictable.

These ideas can be formalized as follows: the algorithmic complexity K of a symbol-string S is
defined to be the length (generally measured in bits) of the shortest program on a given computer
[51 ¢1 that will emit that string and then halt. In symbols:

K. (S) = m};n{Len(P) | eval(cl, P) = S} (1)

where eval(cl, P) denotes the result of running program P on computer cl.

In addition to providing a precise measure of complexity, K.;(S) has many remarkable properties.
In particular, it makes contact with the axioms of probability (as will be discussed below), and
hence with the idea of entropy, with endless ramifications in communication theoryl6! | physicsl?] |
and machine learning (1] .

If we have another computer c2 available, 1t will generally assign a different complexity to the given
string S. Kolmogorov demonstrated the remarkable fact that for any computer ¢2 and any universal
computer cl,

Kc1(S) € KeaS) + k12 (2)

where k12 depends on cl and c2 but does not depend on S; i.e. a value of £12 can be found which
makes equation 2 hold for all strings S. Basically k12 is the length of the “emulator program”
Em(c1|c2) which enables ¢2 to emulate c1. There is no guarantee that £12 will be small. Henceforth
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we assume c2 is also universal, by using equation 2 twice we get two-sided (upper and lower) bounds
on the complexity difference between any two universal machines

If we consider the limit of very complex strings S, the ratio K. /K2 goes to unity:

Kcl
—_—=1 3
Ka(S)—oo Koz ®)

In this sense the constant k12 becomes negligible and K loses its dependence on the choice of
computer cl or ¢2 This 1s the basis for the claims that K is an all-purpose measure of complexity
On the other hand, whenever we wish to compute the difference K. —K.2, the constant cannot be
neglected

One often hears the emphatic statement that “K is universal” This statement is correct in a technical
sense, because the hiterature 1n this field defines the word “universal” to denote the property of
“differing by at most a constant” as exhibited in equation 2. The problem is, this technical definition
diverges quite a bit from the vernacular meaning of “universal?

Although K is “universal” 1n this technical sense, 1t has not been proven that K is all-purpose, or
general-purpose, or universal in the vernacular sense. In particular it is an abuse of language to speak
of “the universal distribution” when there are in fact many non-identical “universal” distributions.

Equivalence

Things that are equivalent in one respect need not be 1dentical in all respects. For instance, “same-
colored objects” constitute an equivalence class, but we cannot conclude that all red objects are the
same size. The “universal” complexity measures form an equivalence class, when compared in the
limit as 1n equation 3 — but that does not mean they are equivalent for all purposes.

It 1s often argued that the asymptotic behavior (equation 3) is a guide to the finite-case behavior.
Our point, as 1llustrated below, 1s that such guidance is not 100% reliable.

Application to Communication Theory

In communication theory, it is often desired to calculate the average cost per bit of transmitting a
message For simple strings, 1 e. where the length of the program for S is smaller than the length
of S itself, we could save money by transmitting the program instead of the string. This is called
algorithmic data compression. It makes sense to compare the efficiency of two coding schemes
by taking the ratio of their code lengths. In this specialized application, and in the limit of long
transmissions (i.e complex strings), it is permissible to forget what computer is used to evaluate
the complexity — it doesn’t matter since the length of any emulator can be amortized over a large
number of message bits. For finite strings, however, K. () is certainly has no unique value (since 1t
depends on cl) and is not provably an optimal (or even a good) coding scheme. Indeed, we believe
1t 1s unlikely to be good, for “typical” data streams and “typical” computers. Another blemish is
that Kolmogorov complexity 1s noncomputable(l5] — the definition (equation 1) runs afoul of the
halting problem
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3 The Connection between Complexity and Probability

There 1s a deep connection between complexity and probability. We define the following probability
distribution over strings.

BT - ) S L
P.y(S) := Lh_{f;o 2 Z Saval(er,py *Len(p) (4)
P

where 6 is the Kronecker delta. This 1s equal to the probability that a randomly-tossed program
would generated S and then halt. To understand how the limit converges, consider the program P,
that 1s the shortest program that emits S; it has length K.1(S). There will 2V ways of padding P,
to length K.1(S) + N using all possible suffixes. Therefore for each L > K.1(S), the contribution
of Py’s daughters to P.;(S) will be constant. If there are alternative ways of computing S, using
programs for which P is not a prefix, P;(S) will exceed 2-X<:(5). Usually these alternatives do
not contribute significantly, so the negative-log-probability is essentially equal to the complexity.
Indeed, it 1s arguably a better definition of complexity.

By extension, for a set of strings o, we define

Py(o) =) Pa(S) (5)

S€o

The function P.; maps sets (of strings) into positive numbers, and the P.,-value of the union of
disjoint sets is the sum of the P.j-values of the ingredients. Therefore it is a measure, by definition
of measure. Furthermore, since it is bounded above (by unity, if not less), 1t is a probability measure,
by definition of probability measure

Application to Statistical Physics

Physicists commonly have a keen and robust intuition about probability. A common belief is that
there is “one true probability distribution” that characterizes the universe; theory are experiment
serve to discover that that distribution is. Much of the the Bayesian inference literature also seems to
adhere to this belief. This belief is sometimes so strong that people are unwilling even to consider the
notion of more than one probability distribution. However, in the spirit of multiple non-Euclidean
geometries, we must now at least talk about multiple probabilities — perhaps later we can decide
which one describes Nature.

This yields a simpler yet more sophisticated way of understanding the recent interesting work of
Zurekl?] | in which he rederived the foundations of physics using 2-X “instead” of probability. But
we see that 1t cannot be considered a substitute for probability — it must be considered a probability,
no more, no less, according to the axioms of probability theory.

We suspect that “a” probability distribution derived from an ordinary computer or Turing machine
will not in fact describe well “the” probability distribution of the real universe.

Not an All-Purpose Probability

When complexity 1s used to compute a probability via formula 4, it generally does not make sense
to take the ratio of complexities. It makes much more sense to compute the ratio of probabilities,
but that corresponds to the difference of complexities. The constant £12 must not be neglected.

To gain intuition about the consequences of modest values of k12, consider two computers cl and ¢2
which are identical except that the latter requires an N-bit password at the head of all programs.
Then for any string S,,

P(S) = 27V Pa(S) + (1 = 27 )Py (So) (6)
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where Sp is the string “Permission denied” that c2 emits when the required password is absent. If the

password length is, say, N = 20 bits, we see that for all strings other than Sp, c2 assigns a probability

a ‘on times smaller than ¢1 would. This ratio persists even for very complex strings. Twenty

: :s not very many, but million-fold misjudgements of probabilities are often quite significant in
actice Therefore the distinctions that lie behind k12 must be taken very seriously.

It may seem inconsequential to change the probability of all strings (or all except one) by a constant,
therefore consider the following elaboration of the previous example. Imagine a computer ¢2 that
calls c1 as a “subroutine” It can examine cl’s output string before deciding whether to enforce a
password requirement on 1ts program. In this way c2 can change the probability of any computable
subset of the set of all strings.

To put this in mathematical terms, we conclude that the convergence of the limit in equation 3 is
highly non-uniform. Consider the two statements

e For any two universal computers cl and c2, there exists some F such that for all strings S,
P.1(S) differs from P.5(S) by at most a factor of F

e On the other hand, for any universal computer cl and for any factor F > 1, there exists another
computer c2 such that P.,(S) differs from P,»(S) by more than F on almost all strings S.

As mentioned above, 1t 1s often argued that the asymptotic behavior can be used a guide to the
finite-case behavior One should be very careful, though, when trying to generalize a result that
depends sensitively on the order of limits.

4 Un-Algorithmic Complexities

The power of the computer gives us the power to create very peculiar probability distributions,
but we must dispell the notion that it is somehow more powerful than other ways of specifying a
distribution; in fact 1t 1s less powerful. As a simple yet practical example, let the probability of a
particular string Sy be zero, corresponding to infinite complexity Modeling this distribution would
require a computer c0 that 1s clearly not a universal computer.

As a more troubling example, consider the un-algorithmic probability distribution
P.3(S) =27 °Ka(®)  for some a > 1 (7)

for all S # Sp, where cl 1s some universal computer (and if you want, you can assign So enough
probability to make P.3 normahized) The distribution P.3 is perfectly reasonable and well defined; it
Just assigns a lower probability to long strings than any distribution based on a universal computer(12]
would. (Otherwise the proportional relationship in equation 7 would violate the bound in equation
2) The point remains’ there exist perfectly reasonable probability distributions that cannot be
based on algorithmic complexity in a reasonable way.

We note in passing that Chaitin’s remarkable number Q (11] has no unique value; its value and
meaning are tied to a particular choice of computer.

Similarly, the “universal” Lempel-Ziv coding schemel16] just ascribes an arbitrary prior probability
to strings Their probability works quite well for compressing ordinary text, but not for other strings,
e g rasterized pictures. It 1s “universal” in the technical, asymptotic sense, but is not unique or
all-purpose or provably optimal in any practical sense.

Also similarly, Rissanen’s “universal prior for integers” (13] has no particular claim to unique cor-
rectness. There are innumerable ways of dividing the available probability measure among all the
integers. Indeed, consider any non-negative function F(i) for which the sum C = }.72__ F(i)
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exists, and assign P(i#) := F(i)/C. Any F-function that is strictly positive (i.e. nonzero) is uni-
versal 1n the technical sense. There are infinitely many choices for F'; the “right” choice is highly
application-dependent. Rissanen’s proposed prior Just constitutes a particular choice of F.

Assigning probabilities to strings is no different from assigning probabilities to integers; there are
countably many strings and they can be placed in one-to-one correspondence with the integers.

The most general way of assigning probabilities is to make a long list with two columns, writing
down each string next to its corresponding probability. This is just a low-tech way of specifying
the function F(i). If there is a more concise specification, such as F(i) = exp(—i?), then we have
the remarkable possibility of assigning probabilities to countably many strings using only a finite
amount of specification.

The function F(i) can be considered a computer program for computing F given i, but that does
not mean that this formulation is equivalent to computational complexity; for instance F' could be
zero, or could implement the un-algorithmic probability of equation 7.

5 Absolute Descriptions

In any case, we face the question of how many bits it takes to describe a given computer. Suppose
cl is a particular universal Turing machine. As explained above, it will not do to say “all universal
Turing machines are equivalent” — they may be equivalent with respect to computability, but they
are not equivalent with respect to computational complexity.

As mentioned above, k12 can be thought of as the length of the emulator program that allows ¢2 to
emulate c1 We could, 1n turn, have another computer ¢3 that emulates ¢2, and so forth; £12 + £23
would be a bound on k13 This corresponds roughly, but not exactly, to the chain property of
conditional probabilities:

P(a) = P(alb) P(b) (8)

Describing one computer 1n the language of another is not particularly helpful unless the process
terminates at some point in an absolute, primordial computer that does not need describing.

The structure of a Turing machine can be specified in detail using a bounded amount of English
textual description (although it might be easier to use a graphical blueprint). English is a higher-
level language for a common “computer” that uses neurons for the machinery. The structure of this
computer, the human brain, 1s specified by a bounded amount of DNA (plus a bounded amount of
data acquired by learning)

6 Information Content of the Genome; Natural Probability
Distributions

As an illustrative application of the foregoing ideas, we will now argue that the information content
of the genome poses nontrivial issues of complexity and probability. Some of the arguments in this
section parallel the arguments in the following section.

In vertebrates, the retina and the visual processing centers of the brain arise separately, and get
“wired up” relatively late in embryonic life The connection pattern is not trivial; drugs or disease
can cause the mapping to become a random permutation, with serious consequences.

If one were to make the seemingly reasonable assumption that all possible permutations were a prior:
equally probable, the correct connection pattern would be vanishingly improbable. The creature
would not be able to learn the correct permutation, since no lifetime 1s long enough to gather the
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required information What’s worse, under these assumptions the correct permutation could not
be inherited, since to specify the pattern would require more information than is contained in the
creature’s entire genome.

Hence the “uninformative” prior that all permutations are equally likely is unacceptable. The
probabilities and the information budget must be computed using computational complexity. As
established in the previous sections, we must be careful to evaluate the computational complexity
using the “right” computer The question 1s, what is “right” in this case?

The machine language of the “natural” computer is determined by biophysics and biochemistry. The
creature’s DNA 1s a program that runs on this computer. In our example, the actual retinotopic
connection “procedure” is known to use concentration gradients of certain marker molecules diffusing
in physical space to preserve topological properties: the idea is that neighboring parts of the retina
map to neighboring parts of visual cortex. There are very few permutations that preserve topology,
compared to general permutations. We conclude that topology-preserving connections are probable
because they are simple to express in the language of the biological computer.

Some people have tried to understand probabilities in terms of systems of plausible belief. This view
cannot encompass physical processes such as embryogenesis — the complexity of the the optic nerve
connection does not depend on what anybody believes about it.

The brain needs to understand the physical world. The brain uses, internally, the laws of physics to
build models of the external world. When considering the information content of the genome, it 1s
crucial to realize that the genome need not contain a specification of the topology and dimensionality
of the universe — they can be taken as “given” — on the right-hand side of the “given” bar 1n all
conditional probabilities.

To quote Walt Whitman, “A man 1s a piece of the universe made alive”

The architecture of the biological computer stands in stark contrast to the architecture of typical
1990s computers, which go to some trouble to conceal the topology and dimensionality of the universe
1n which they reside. A “good” computer tries to make every word in memory equally easy to access.
In a typical workstation, a retinotopic map is no easier to construct when it represents 2 dimensions,
as opposed to 11 or 26 or any other unphysical ‘—) number of dimensions.

Computer scientists are fond of saying that “the structure of the computer does not affect the
structure of the computation” That is an overstatement. The structure of the computer may not
affect questions of computability, but it does affect computational complexity.

7 Connection to Learning

There 1s a deep connection between learning and compression(14] .

Learning depends on both (a) prior knowledge and (b) training data. The role of prior knowledge
1s infinitely important (although 1t 1s often not discussed) In the discrete case, a simple counting
argument[® shows that without an informative prior, automatic learning cannot result in useful
generalization In the case of a more general hypothesis space, the work of Vapnik & Chervonenkis
(9] yields the corresponding result 1n order to learn from examples and form a reliable generalization,
the number of training examples must scale like the “richness” of the hypotheses space. This 1dea
can be made quite precise

In general, 1gnorance plus statistics equals 1gnorance.

As a concrete example, consider the Optical Character Recognition (OCR) system that was built
in our labll8 | The design and traming of this system can be viewed as a process of progressive
restriction At each step in the process, the amount of information necessary to specify a working
system (the number of free parameters) 1s much less than at the previous step. Specifically:
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1. Neural Network — We start with the assumption that the task could be performed by an
artificial neural network with a limited number of processing units. This is already quite a
strict assumption; although it could be motivated by the fact that humans can perform the
task using supposedly analogous resources, the true justification for our assumptions is that
the final system actually works

2 Feed-Forward, Layered Network — The most general neural network has every unit connected
to every other unit, but we restricted our attention to networks in which the connection pattern
1s a directed acyclic graph, with at most five steps from input to output.

3 Sparse Network — We further restricted the network so that in each layer (except the last),
the number of connections was very small compared to the number of possible connections.

4. Local Network — We assigned X and Y labels to the units in each layer (except the last)
1n a way that imputed to them a position in a two-dimensional array. We then assured that
each unit’s incoming connections came only from units “close” (in the two-dimensional sense)
to the the corresponding unit in the previous layer. Once again this connection pattern is a
restriction of the previously-mentioned connection pattern.

5. Convolutional Network — We further restricted the network so that the pattern of incoming
connection strengths was the same for all units 1n a given layer; that is, the connection pattern
was invariant to shifts in X and Y.

6 Trained Network — Finally, we trained the network. That is, we used “BackProp”[8] to search
for a set of connection strengths that were (in addition to the foregoing restrictions) maximally
consistent with a training set containing many thousands of images.

It 1s instructive to consider what would happen if our design process had omitted restrictions 3
(sparseness) 4 (locality) and 5 (shift invariance). In that case, the X and Y labels assigned to
the units would be dummy indices — units could be permuted without changing the connection
pattern, since everything is connected to everything else (within layers). One consequence is that
such a network would be invariant under permutation of the input pixels. Imagine how hard it would
be for a human to learn the required OCR task by viewing patterns through a fiber-optic system
that scrambled the incoming images. As a general rule, if you have information about what pixels
are neighbors of other pixels, you should use that information You don’t want to design a system
that 1s invariant under encryption

To put 1t another way, the purpose of the restrictions on the network was to “program in” a very
important piece of information. The OCR images are not random collections of ones and zeros
— they come from images on real, two-dimensional paper. Therefore we constructed a specialized
computer (i.e. the neural network) in which the short programs correspond to functions likely to be

useful in solving our problem The network should not have to guess the dimensionality of its input
data
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8 Conclusions

Algorithmic complexity has heretofore been used primarily to measure the asymptotic complexity
of very long strings. For such applications, 1t may not be necessary to specify the computer used to
determine the complexity. The term “universal” has been used in this context, by dint of a highly
technical definition; one should not imagine that such a complexity measure is all-purpose, unique,
or “universal” 1n the vernacular sense

The structure of the computer generally does not affect questions of computability, but it strongly
affects computational complexity.

A perceptual system should not be invariant under encryption. An adaptive system should not need
to learn or guess the dimensionality or symmetry of the world in which it operates. Ignorance plus
statistics equals ignorance.

There are many situations where knowing the right prior probability is important, including learning
from examples, data compression, and statistical physics. There are many possible inequivalent
probabulity distributions. Finding the right one for a given application is not a task for abstract
mathematics or computer science; 1t depends on observable properties of the physical world.

Notions of complexity are attracting mounting attention and are being extended to new areas. We
must take care that these extensions are not burdened by misconceptions based on no-longer-valid

side conditions or Intuition

ohn S. Denker
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