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Abstract

A key challenge in designing convolutional network models is sizing them appro-
priately. Many factors are involved in these decisions, including number of layers,
feature maps, kernel sizes, etc. Complicating this further is the fact that each of
these influence not only the numbers and dimensions of the activation units, but
also the total number of parameters. In this paper we focus on assessing the in-
dependent contributions of three of these linked variables: The numbers of layers,
feature maps, and parameters. To accomplish this, we employ a recursive con-
volutional network whose weights are tied between layers; this allows us to vary
each of the three factors in a controlled setting. We find that while increasing the
numbers of layers and parameters each have clear benefit, the number of feature
maps (and hence dimensionality of the representation) appears ancillary, and finds
most of its benefit through the introduction of more weights. Our results (i) empir-
ically confirm the notion that adding layers alone increases computational power,
within the context of convolutional layers, and (ii) suggest that precise sizing of
convolutional feature map dimensions is itself of little concern; more attention
should be paid to the number of parameters in these layers instead.

1 Introduction
Convolutional networks have recently made significant progress in a variety of image classification
and detection tasks [13, 2, 23], with further gains and applications continuing to be realized. At
the same time, performance of these models is determined by many interrelated architectural fac-
tors; among these are the number of layers, feature map dimension, spatial kernel extents, number
of parameters, and pooling sizes and placement. Notably, multiple layers of unpooled convolution
[13, 30] have been utilized lately with considerable success. These architectures must be carefully
designed and sized using good intuition along with extensive trial-and-error experiments on a vali-
dation set. But are there any characteristics to convolutional layers’ performance that might be used
to help inform such choices? In this paper, we focus on disentangling and assessing the independent
effects of three important variables: the numbers of layers, feature maps per layer, and parameters.

We accomplish this via a series of three experiments using a novel type of recursive network model.
This model has a convolutional architecture and is equivalent to a deep convolutional network where
all layers have the same number of feature maps and the filters (weights) are tied across layers. By
aligning the architecture of this model to existing convolutional approaches, we are able to tease
apart these three factors that determine performance. For example, adding another layer increases
the number of parameters, but it also puts an additional non-linearity into the system. But would
the extra parameters be better used expanding the size of the existing layers? To provide a general
answer to this type of issue is difficult since multiple factors are conflated: the capacity of the model
(and of each layer) and its degree of non-linearity. However, we can design a recursive model to
have the same number of layers and parameters as the standard convolutional model, and thereby see
if the number of feature maps (which differs) is important or not. Or we can match the number of
feature maps and parameters to see if the number of layers (and number of non-linearities) matters.
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We consider convolutional models exclusively in this paper for several reasons. First, these models
are widely used for image recognition tasks. Second, they are often large, making architecture search
tedious. Third, and most significantly, recent gains have been found by using stacks of multiple un-
pooled convolution layers. For example, the convolutional model proposed by Krizhevsky et al. [13]
for ImageNet classification has five convolutional layers which turn out to be key to its performance.
In [30], Zeiler and Fergus reimplemented this model and adjusted different parts in turn. One of the
largests effects came from changing two convolutional layers in the middle of the model: remov-
ing them resulted in a 4.9% drop in performance, while expanding them improved performance by
3.0%. By comparison, removing the top two densely connected layers yielded a 4.3% drop, and
expanding them a 1.7% gain, even though they have far more parameters. Hence the use of multiple
convolutional layers is vital and the development of superior models relies on understanding their
properties. Our experiments have particular bearing in characterizing these layers.

1.1 Related Work

The model we employ has relations to recurrent neural networks. These are are well-studied models
[11, 21, 27], naturally suited to temporal and sequential data. For example, they have recently
been shown to deliver excellent performance for phoneme recognition [8] and cursive handwriting
recognition [7]. However, they have seen limited use on image data. Socher et al. [26] showed how
image segments could be recursively merged to perform scene parsing. More recently [25], they
used a convolutional network in a separate stage to first learn features on RGB-Depth data, prior to
hierarchical merging. In these models the input dimension is twice that of the output. This contrasts
with our model which has the same input and output dimension.

Our network also has links to several auto-encoder models. Sparse coding [18] uses iterative algo-
rithms, such as ISTA [1], to perform inference. Rozell et al. [20] showed how the ISTA scheme
can be unwrapped into a repeated series of network layers, which can be viewed as a recursive net.
Gregor & LeCun [9] showed how to backpropagate through such a network to give fast approxima-
tions to sparse coding known as LISTA. Rolfe & LeCun [19] then showed in their DrSAE model
how a discriminative term can be added. Our network can be considered a purely discriminative,
convolutional version of LISTA or DrSAE.

There also are interesting relationships with convolutional Deep Belief Networks [15], as well as
Multi-Prediction Deep Boltzmann Machines [6]. As pointed out by [6], mean field inference in such
models can be unrolled and viewed as a type of recurrent network. In contrast to the model we use,
however, [15] trains unsupervised using contrastive divergence, while [6] is nonconvolutional and
focuses on conditioning on random combinations of inputs and targets.

2 Approach

Our investigation is based on a multilayer Convolutional Network [14], for which all layers beyond
the first have the same size and connection topology. All layers use rectified linear units (ReLU) [3,
4, 16]. We perform max-pooling with non-overlapping windows after the first layer convolutions and
rectification; however, layers after the first use no explicit pooling. We refer to the number of feature
maps per layer as M , and the number of layers after the first as L. To emphasize the difference
between the pooled first layer and the unpooled higher layers, we denote the first convolution kernel
by V and the kernels of the higher layers by Wl. A per-map bias bl is applied in conjunction with
the convolutions. A final classification matrix C maps the last hidden layer to softmax inputs.

Since all hidden layers have the same size, the transformations at all layers beyond the first have the
same number of parameters (and the same connection topology). In addition to the case where all
layers are independently parameterized, we consider networks for which the parameters of the higher
layers are tied between layers, so that Wi = Wj and bi = bj for all i, j. As shown in Fig. 1, tying
the parameters across layers renders the deep network dynamics equivalent to recurrence: rather
than projecting through a stack of distinct layers, the hidden representation is repeatedly processed
by a consistent nonlinear transformation. The convolutional nature of the transformation performed
at each layer implies another set of ties, enforcing translation-invariance among the parameters.
This novel recursive, convolutional architecture is reminiscent of LISTA [9], but without a direct
projection from the input to each hidden layer.
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Figure 1: Our model architecture prior to the classification layer, as applied to CIFAR and SVHN
datasets. (a): Version with un-tied weights in the upper layers. (b): Version with tied weights.
Kernels connected by dotted lines are constrained to be identical. (c): The network with tied weights
from (b) can be represented as a recursive network.

2.1 Instantiation on CIFAR-10 and SVHN

We describe our models for the CIFAR-10 [12] and SVHN [17] datasets used in our experiments. In
both cases, each image Xn is of size 32× 32× 3. In the equations below, we drop the superscript n
indicating the index in the dataset for notational simplicity. The first layer applies a set of M kernels
Vm of size 8 × 8 × 3 via spatial convolution with stride one (denoted as ∗), and per-map bias b0

m,
followed by the element-wise rectification nonlinearity. We use a “same” convolution (i.e. zero-
padding the edges), yielding a same-size representation P of 32 × 32 ×M . This representation is
then max-pooled within each feature map with non-overlapping 4× 4 windows, producing a hidden
layer Z1 of size 8× 8×M .

Pm = max
(
0,b0

m +Vm ∗X
)
, Z1

i,j,m = max
i′,j′∈{0,··· ,3}

(P4·i+i′,4·j+j′,m)

All L succeeding hidden layers maintain this size, applying a set of M kernels Wl
m of size 3 ×

3 ×M , also via “same” spatial convolution with stride one, and per-map bias bl
m, followed by the

rectification nonlinearity:
Zl

m = max
(
0,bl−1

m +Wl−1
m ∗ Zl−1)

In the case of the tied model (see Fig. 1(b)), the kernels W l (and biases bl) are constrained to be
the same. The final hidden layer is subject to pixel-wise L2 normalization and passed into a logistic
classifier to produce a prediction Y:

Yk =
exp(Y ′k)∑
k exp(Y

′
k)

where Y′k =
∑
i,j,m

Ck
i,j,m · ZL+1

i,j,m/||Z
L+1
i,j ||

The first-layer kernels Vm are initialized from a zero-mean Gaussian distribution with standard de-
viation 0.1 for CIFAR-10 and 0.001 for SVHN. The kernels of the higher layers Wl

m are initialized
to the identity transformation Wi′,j′,m′,m = δi′,0 · δj′,0 · δm′,m, where δ is the Kronecker delta.
The network is trained to minimize the logistic loss function L =

∑
n log(Y

n
k(n)) and k(n) is the

true class of the nth element of the dataset. The parameters are not subject to explicit regularization.
Training is performed via stochastic gradient descent with minibatches of size 128, learning rate
10−3, and momentum 0.9:

g = 0.9 · g +
∑

n∈minibatch

∂Ln

∂ {V,W,b}
; {V,W,b} = {V,W,b} − 10−3 · g
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3 Experiments

3.1 Performance Evaluation

We first provide an overview of the model’s performance at different sizes, with both untied and
tied weights, in order to examine basic trends and compare with other current systems. For
CIFAR-10, we tested the models using M = 32, 64, 128, or 256 feature maps per layer, and
L = 1, 2, 4, 8, or 16 layers beyond the first. For SVHN, we used M = 32, 64, 128, or 256 fea-
ture maps and L = 1, 2, 4, or 8 layers beyond the first. That we were able to train networks at these
large depths is due to the initialization of all W l

m to the identity: this initially copies activations at
the first layer up to the last layer, and gradients from the last layer to the first. Both untied and tied
models had trouble learning with zero-centered Gaussian initializations at some of the larger depths.

Results are shown in Figs. 2 and 3. Here, we plot each condition on a grid according to numbers
of feature maps and layers. To the right of each point, we show the test error (top) and training
error (bottom). Contours show curves with a constant number of parameters: in the untied case, the
number of parameters is determined by the number of feature maps and layers, while in the tied case
it is determined solely by the number of feature maps; Section 3.2.1 examines the behavior along
these lines in more detail.

First, we note that despite the simple architecture of our model, it still achieves competitive perfor-
mance on both datasets, relative to other models that, like ours, do not use any image transformations
or other regularizations such as dropout [10, 28], stochastic pooling [29] or maxout [5] (see Table 1).
Thus our simplifications do not entail a departure from current methods in terms of performance.

We also see roughly how the numbers of layers, feature maps and parameters affect performance
of these models at this range. In particular, increasing any of them tends to improve performance,
particularly on the training set (a notable exception to CIFAR-10 at 16 layers in the tied case, which
goes up slightly). We now examine the independent effects of each of these variables in detail.
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Figure 2: Classification performance on CIFAR-10 as a function of network size, for untied (left)
and tied (right) models. Contours indicate lines along which the total number of parameters remains
constant. The top number by each point is test error, the bottom training error.

CIFAR-10 Test error (%)
Ours 16.0
Snoek et al. [24] 15.0
Ciresan et al. [2] 15.9
Hinton et al. [10] 16.6
Coates & Ng [3] 18.5

SVHN Test error (%)
Ours 3.1
Zeiler & Fergus (max pool) [29] 3.8
Sermanet et al. [22] 4.9

Table 1: Comparison of our largest model architecture (measured by number of parameters) against
other approaches that do not use data transformations or stochastic regularization methods.
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Figure 3: Classification performance on Street View House Numbers as a function of network size,
for untied (left) and tied (right) models.

3.2 Effects of the Numbers of Feature maps, Parameters and Layers

In a traditional untied convolutional network, the number of feature maps M , layers L and parame-
ters P are interrelated: Increasing the number of feature maps or layers increases the total number of
parameters in addition to the representational power gained by higher dimensionality (more feature
maps) or greater nonlinearity (more layers). But by using the tied version of our model, we can
investigate the effects of each of these three variables independently.

To accomplish this, we consider the following three cases, each of which we investigate with the
described setup:

1. Control for M and P , vary L: Using the tied model (constant M and P ), we evaluate
performance for different numbers of layers L.

2. Control for M and L, vary P : Compare pairs of tied and untied models with the same
numbers of feature maps M and layers L. The number of parameters P increases when
going from tied to untied model for each pair.

3. Control for P and L, vary M : Compare pairs of untied and tied models with the same
number of parameters P and layers L. The number of feature maps M increases when
going from the untied to tied model for each pair.

Note the number of parameters P is equal to the total number of independent weights and biases
over all layers, including initial feature extraction and classification. This is given by the formula
below for the untied model (for the tied case, substitute L = 1 regardless of the number of layers):

P = 8 · 8 · 3 ·M + 3 · 3 ·M2 · L + M · (L+ 1) + 64 ·M · 10 + 10
(first layer) (higher layers) (biases) (classifier)

3.2.1 Case 1: Number of Layers

We examine the first of these cases in Fig. 4. Here, we plot classification performance at differ-
ent numbers of layers using the tied model only, which controls for the number of parameters. A
different curve is shown for different numbers of feature maps. For both CIFAR-10 and SVHN,
performance gets better as the number of layers increases, although there is an upward tick at 8
layers for CIFAR-10 test error. The predominant cause of this appears to be overfitting, since the
training error still goes down. At these depths, therefore, adding more layers alone tends to increase
performance, even though no additional parameters are introduced. This is because additional layers
allow the network to learn more complex functions by using more nonlinearities.

This conclusion is further supported by Fig. 5, which shows performance of the untied model accord-
ing to numbers of parameters and layers. Note that vertical cross-sections of this figure correspond
to the constant-parameter contours of Fig. 2. Here, we can also see that for any given number of
parameters, the best performance is obtained with a deeper model. The exception to this is again the
8-layer models on CIFAR-10 test error, which suffer from overfitting.
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Experiment 1a: Error by Layers and Features (tied model)
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Figure 4: Comparison of classification error for different numbers of layers in the tied model. This
controls for the number of parameters and features. We show results for both (a) CIFAR-10 and (b)
SVHN datasets.

Experiment 1b: Error by Parameters and Layers (untied model)
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Figure 5: Comparison of classification error for different numbers of parameters in the untied
model, for (a) CIFAR-10 and (b) SVHN datasets. Larger numbers of both parameters and layers
help performance. In addition, for a fixed budget of parameters, allocating them in more layers is
generally better (CIFAR-10 test error increases above 4 layers due to overfitting).
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3.2.2 Case 2: Number of Parameters

To vary the number of parameters P while holding fixed the number of feature mapsM and layersL,
we consider pairs of tied and untied models where M and L remain the same within each pair. The
number of parameters P is then greater for the untied model.

The result of this comparison is shown in Fig. 6. Each point corresponds to a model pair; we show
classification performance of the tied model on the x axis, and performance of the untied model
on the y axis. Since the points fall below the y = x line, classification performance is better for
the untied model than it is for the tied. This is not surprising, since the untied model has more
total parameters and thus more flexibility. Note also that the two models converge to the same test
performance as classification gets better — this is because for the largest numbers of L and M , both
models have enough flexibility to achieve maximum test performance and begin to overfit.
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Figure 6: Comparison of classification error between tied and untied models, controlling for the
number of feature maps and layers. Linear regression coefficients are in the bottom-right corners.

3.2.3 Case 3: Number of Feature Maps

We now consider the third condition from above, the effect of varying the number of feature mapsM
while holding fixed the numbers of layers L and parameters P .

For a given L, we find model pairs whose numbers of parameters P are very close by varying the
number of feature maps. For example, an untied model with L = 3 layers andM = 71 feature maps
has P = 195473 parameters, while a tied model with L = 3 layers and M = 108 feature maps has
P = 195058 parameters — a difference of only 0.2%. In this experiment, we randomly sampled
model pairs having the same number of layers, and where the numbers of parameters were within
1.0% of each other. We considered models where the number of layers beyond the first was between
2 and 8, and the number of feature maps was between 16 and 256 (for CIFAR-10) or between 16
and 150 (for SVHN).

Fig. 7 shows the results. As before, we plot a point for each model pair, showing classification
performance of the tied model on the x axis, and of the untied model on the y axis. This time,
however, each pair has fixed P and L, and tied and untied models differ in their number of feature
maps M . We find that despite the different numbers of feature maps, the tied and untied models
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Experiment 3: Same Parameters and Layers, Varied Feature Maps
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Figure 7: Comparison of classification error between tied and untied models, controlling for the
number of parameters and layers. Linear regression coefficients in the bottom-right corners.

perform about the same in each case. Thus, performance is determined by the number of parameters
and layers, and is insensitive to the number of feature maps.

4 Discussion

Above we have demonstrated that while the numbers of layers and parameters each have clear effects
on performance, the number of feature maps has little effect, once the number of parameters is
taken into account. This is perhaps somewhat counterintuitive, as we might have expected the use
of higher-dimensional representations to increase performance; instead we find that convolutional
layers are insensitive to this size.

This observation is also consistent with Fig. 5: Allocating a fixed number of parameters across
multiple layers tends to increase performance compared to putting them in few layers, even though
this comes at the cost of decreasing the feature map dimension. This is precicesly what one might
expect if the number of feature maps had little effect compared to the number of layers.

Our analysis employed a special tied architecture and comes with some important caveats, however.
First, while the tied architecture serves as a useful point of comparison leading to several interesting
conclusions, it is new and thus its behaviors are still relatively unknown compared to the common
untied models. This may particularly apply to models with a large number of layers (L > 8), or very
small numbers of feature maps (M < 16), which have been left mostly unexamined in this paper.
Second, our experiments all used a simplified architecture, with just one layer of pooling. While we
believe the principles found in our experiments are likely to apply in more complex cases as well,
this is unclear and requires further investigation to confirm.

The results we have presented provide empirical confirmation within the context of convolutional
layers that increasing layers alone can yield performance benefits (Experiment 1a). They also indi-
cate that filter parameters may be best allocated in multilayer stacks (Experiments 1b and 3), even
at the expense of having fewer feature maps. In conjunction with this, we find the feature map di-
mension itself has little effect on convolutional layers’ performance, with most sizing effects coming
from the numbers of layers and parameters (Experiments 2 and 3). Thus, focus would be best placed
on these variables when determining model architectures.
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