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Abstract

In this paper we present a scalable dataflow hard-
ware architecture optimized for the computation of general-
purpose vision algorithms—neuFlow—and a dataflow
compiler—luaFlow—that transforms high-level flow-graph
representations of these algorithms into machine code for
neuFlow. This system was designed with the goal of pro-
viding real-time detection, categorization and localization
of objects in complex scenes, while consuming 10 Watts
when implemented on a Xilinx Virtex 6 FPGA platform, or
about ten times less than a laptop computer, and producing
speedups of up to 100 times in real-world applications. We
present an application of the system on street scene anal-
ysis, segmenting 20 categories on 500 × 375 frames at 12
frames per second on our custom hardware neuFlow.

1. Introduction

Computer vision is the task of extracting high-level in-
formation from raw images. Generic, or general-purpose
synthetic vision systems have for ultimate goal the elabora-
tion of a model that captures the relationships between high-
dimensional data (images, videos) into a low-dimensional
decision space, where arbitrary information can be retrieved
easily, e.g. with simple linear classifiers or nearest neighbor
techniques. The exploration of such models has been an
active field of research for the past decades, ranging from
fully trainable models—such as convolutional networks—
to hand-tuned models—HMAX-type architectures, as well
as systems based on dense SIFT (Scale-Invariant Feature
Transform) or HoG (Histograms of Gradients).

Many successful object recognition systems use dense
features extracted on regularly-spaced patches over the in-
put image. The majority of the feature extraction systems
have a common structure composed of a filter bank (gen-
erally based on oriented edge detectors or 2D gabor func-

tions), a non-linear operation (quantization, winner-take-all,
sparsification, normalization, and/or point-wise saturation)
and finally a pooling operation (max, average or histogram-
ming). For example, the scale-invariant feature transform
(SIFT [23]) operator applies oriented edge filters to a small
patch and determines the dominant orientation through a
winner-take-all operation. Finally, the resulting sparse vec-
tors are added (pooled) over a larger patch to form local ori-
entation histograms. Some recognition systems use a single
stage of feature extractors [19, 7, 25]. Other models like
HMAX-type models [27, 24] and convolutional networks
use two or more layers of successive feature extractors.

This paper presents a scalable hardware architecture for
large-scale multi-layered synthetic vision systems based on
large parallel filter banks, such as convolutional networks—
neuFlow—and a dataflow compiler—luaFlow—that trans-
forms a high-level flow-graph representation of an algo-
rithm into machine code for neuFlow. This system is a
dataflow vision engine that can perform real-time detec-
tion, recognition and localization in mega-pixel images pro-
cessed as pipelined streams. The system was designed with
the goal of providing real-time detection, categorization and
localization of objects in complex scenes, while consuming
ten times less than a laptop computer—on the order of 10W
for an FPGA implementation—and producing speedups of
up to 100 times in end-to-end applications, such as the street
scene parser presented in section 3.

Graphics Processing Units (GPUs) are becoming a com-
mon alternative to custom hardware in vision applications,
as demonstrated in [4]. Their advantage over custom hard-
ware are numerous: they are inexpensive, available in most
recent computers, and easily programmable with standard
development kits. The main reasons for continuing develop-
ing custom hardware are twofold: performance and power
consumption. By developing a custom architecture that is
fully adapted to a certain range of tasks (as is shown in this
paper), the product of power consumption by performance
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can be improved by two orders of magnitude (100x).
Other groups are currently working on custom archi-

tectures for convolutional networks or similar algorithms:
NEC Labs [2], Stanford [16], Kaist [15].

Section 2 describes neuFlow’s architecture. Section 3
describes a particular application, based on a standard con-
volutional network. Section 4 gives results on the perfor-
mance of the system. Section 5 concludes.

2. Architecture

Hierarchical visual models, and more generally image
processing algorithms are usually expressed as sequences,
trees or graphs of transformations. They can be well de-
scribed by a modular approach, in which each module pro-
cesses an input image or video collection and produces a
new collection. Figure 4 is a graphical illustration of this
approach. Each module requires the previous bank to be
fully (or at least partially) available before computing its
output. This causality prevents simple parallelism to be im-
plemented across modules. However parallelism can easily
be introduced within a module, and at several levels, de-
pending on the kind of underlying operations.

2.1. A Dataflow Grid

First dataflow architectures were introduced by [1], and
quickly became an active field of research [8, 14, 18]. [3]
presents one of the latest dataflow architectures that shares
several similarities to the approach presented here: while
both architectures rely on a grid of compute tiles, which
communicate via FIFOs, the grid presented here also pro-
vides a runtime configuration bus, which allows efficient
runtime reconfiguration of the hardware (as opposed to
static, offline synthesis).

Figure 1 shows a dataflow architecture that we designed
to process homogeneous streams of data in parallel [9]. It is
defined around several key ideas:

• a 2D grid of NPT Processing Tiles (PTs) that contain:
1- a bank of processing operators. An operator can
be anything from a FIFO to an arithmetic operator, or
even a combination of arithmetic operators. The op-
erators are connected to local data lines, 2- a routing
multiplexer (MUX). The MUX connects the local data
lines to global data lines or to the 4 neighboring tiles.

• a Smart Direct Memory Access module (Smart DMA),
that interfaces off-chip memory and provides asyn-
chronous data transfers, with priority management,

• a set of Nglobal global data lines used to connect PTs
to the Smart DMA, Nglobal << NPT ; and local data
lines used to connect PTs with their 4 neighbors,
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Figure 1. A dataflow computer. A set of runtime configurable pro-
cessing tiles are connected on a 2D grid. They can exchange data
with their 4 neighbors and with an off-chip memory via global
lines. Configurable elements are depicted as squares.

• a Runtime Configuration Bus, used to reconfigure
many aspects of the grid at runtime—connections, op-
erators, Smart DMA modes. . . (the configurable ele-
ments are depicted as squares on Fig.1),

• a controller that can reconfigure most of the computing
grid and the Smart DMA at runtime.

2.2. On Runtime Reconfiguration

One of the most interesting aspects of this grid is its con-
figuration capabilities. Many systems have been proposed
which are based on two-dimensional arrays of processing
elements interconnected by a routing fabric that is recon-
figurable. Field Programmable Gate Arrays (FPGAs) for
instance, offer one of the most versatile grid of process-
ing elements. Each of these processing elements—usually a
simple look-up table—can be connected to any of the other
elements of the grid, which provides with the most generic
routing fabric one can think of. Due to the simplicity of
the processing elements, the number that can be packed in
a single package is in the order of 104 to 105. The draw-
back is the reconfiguration time, which takes in the order
of milliseconds, and the synthesis time, which takes in the
order of minutes to hours depending on the complexity of
the circuit.

At the other end of the spectrum, recent multicore pro-
cessors implement only a few powerful processing elements
(in the order of 10s to 100s). For these architectures, no syn-
thesis is involved, instead, extensions to existing program-
ming languages are used to explicitly describe parallelism.
The advantage of these architectures is the relative simplic-
ity of use: the implementation of an algorithm rarely takes
more than a few days, whereas months are required for a
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typical circuit synthesis for FPGAs.
The architecture presented here is in the middle of this

spectrum. Building a fully generic dataflow computer is
a tedious task. Reducing the range of applications to the
computation of visual models, vision systems and image
processing pipelines allows us to define the following con-
straints:

• high throughput is a top priority, low latency is not.
Indeed, most of the operations performed on images
are replicated over both dimensions of these images,
usually bringing the amount of similar computations to
a number that is much larger than the typical latencies
of a pipelined processing unit

• therefore each operator has to provide with maximal
throughput (e.g. one operation per clock cycle) to the
detriment of any initial latency, and has to be stallable
(e.g. must handle discontinuities in data streams)

• configuration time has to be low, or more precisely in
the order of the system’s latency. This constraint sim-
ply states that the system should be able to reconfigure
itself between two kinds of operations in a time that is
negligible compared to the time needed to perform one
such operation. That is a crucial point to allow runtime
reconfiguration

• the processing elements in the grid should be as coarse
grained as permitted, to maximize the ratio between
computing logic and routing logic. Creating a grid for
a particular application (e.g. convolutional networks)
allows the use of very coarse operators. On the other
hand, a general purpose grid has to cover the space of
standard numeric operators

The first two points of this list are crucial to create a flex-
ible dataflow system. Several types of grids have been pro-
posed in the past [8, 14, 17], often trying to solve the dual
latency/throughput problem, and often providing a comput-
ing fabric that is too rigid.

The grid proposed here provides a flexible processing
framework, due to the stallable nature of the operators. In-
deed, any path can be configured on the grid, even paths that
require more bandwidth that is actually feasible. Instead of
breaking, each operator will stall its pipeline when required.
This is achieved by the use of FIFOs at the input and out-
put of each operators, that compensate for bubbles in the
data streams, and force the operators to stall when they are
full. Any sequence of operators can then be easily created,
without concern for bandwidth issues.

The third point is achieved by the use of a runtime con-
figuration bus, common to all units. Each module in the de-
sign has a set of configurable parameters, routes or settings
(depicted as squares on Figure 1), and possesses a unique

address on the network. Groups of similar modules also
share a broadcast address, which dramatically speeds up re-
configuration of elements that need to perform similar tasks.

A typical execution of an operation on this system is the
following: (1) the control unit configures each tile to be
used for the computation and each connection between the
tiles and their neighbors and/or the global lines, by send-
ing a configuration command to each of them, via the Run-
time Configuration Bus, (2) it configures the Smart DMA to
prefetch the data to be processed, and to be ready to write re-
sults back to off-chip memory, (3) when the DMA is ready,
it triggers the streaming out, (4) each tile processes its re-
spective incoming streaming data, and passes the results to
another tile, or back to the Smart DMA, (5) the control unit
is notified of the end of operations when the Smart DMA
has completed.
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Figure 2. The grid is configured for a complex computation that
involves several tiles: the 3 top tiles perform a 3× 3 convolution,
the 3 intermediate tiles another 3× 3 convolution, the bottom left
tile sums these two convolutions, and the bottom centre tile applies
a function to the result.

Such a grid can be used to perform arbitrary compu-
tations on streams of data, from plain unary operations
to complex nested operations. As stated above, operators
can be easily cascaded and connected across tiles, inde-
pendently managing their flow by the use of input/output
FIFOs.

Figure 2 shows an example of configuration, where the
grid is configured to compute a sum of two convolutions
followed by a non-linear activation function:

y1,i,j = Tanh(

K−1∑
m=0

K−1∑
n=0

x1,i+m,j+nw1,m,n

+

K−1∑
m=0

K−1∑
n=0

x2,i+m,j+nw2,m,n). (1)
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The operator
∑∏

performs a sum of products, or a
dot-product between an incoming stream and a local set of
weights (preloaded as a stream). Therefore each tile per-
forms a 1D convolution, and 3 tiles are used to compute
a 2D convolution with a 3 × 3 kernel. In Figure 2 all the
paths are simplified, and in some cases one line represents
multiple parallel streams.

2.3. Optimizing for FPGAs

Recent DSP-oriented FPGAs include a large number
of hard-wired MAC units and several thousands of pro-
grammable cells (lookup tables), which allow fast proto-
typing and real-time simulation of circuits, but also actual
implementations to be used in final products.

In this section we present a concrete implementation of
the ideas presented in section 2.1, specially tailored for
filter-based algorithms, and optimized for typical modern
FPGAs (e.g. using DSP slices, large block-rams, . . . ). The
architecture presented here has been fully coded in hard-
ware description languages (HDL) to target both ASIC syn-
thesis and programmable hardware like FPGAs.
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Figure 3. Optimizing the grid for filter-based systems. A grid of
multiple full-custom Processing Tiles, and a fast streaming mem-
ory interface (Smart DMA).

2.3.1 Optimized Processing Tiles

The PTs are independent processing tiles laid out on a two-
dimensional grid. As presented in section 2.1, they contain
a routing multiplexer (MUX) and local operators. Com-
pared to the general purpose architecture proposed above,
this implementation is specialized for applications that rely
heavily on two-dimensional convolutions (for convolutional
networks, 80% to 90% of the computations are spent in fil-
tering). Figure 3 shows the specialization:

• the top row PTs only implement Multiply and Accu-
mulate (MAC) arrays (

∑∏
operators), which can be

used as 2D convolvers (implemented in the FPGA by
dedicated hardwired MACs). It can also perform on-
the-fly subsampling (spatial pooling), and simple dot-
products (linear classifiers) [10]

• the middle row PTs contain general purpose operators,
such as squaring and dividing for divisive normaliza-
tion, and other mathematical operators

• the bottom row PTs implement non-linear mapping
engines, used to compute all sorts of functions from
Tanh() to Sqrt() or Abs(). Those can be used at vari-
ous places, from normalization to non-linear activation
units

The operators in the PTs are fully pipelined to produce
one result per clock cycle. Image pixels are stored in off-
chip memory as Q8.8 (16bit, fixed-point), transported on
global lines as Q8.8 and scaled to 32bit integers within oper-
ators, to keep full precision between successive operations.
The numeric precision, and hence the size of a pixel, will
be noted Pbits.

The 2D convolver can be viewed as a dataflow grid itself,
with the only difference that the connections between the
operators (the MACs) are fixed. The reason for having a 2D
convolver within a tile (instead of a 1D convolver per tile,
or even simply one MAC per tile) is that it maximizes the
ratio between computing logic and routing logic, as stated
previously. This is less flexible, as the choice of the array
size is a hardwired parameter, but it is a reasonable choice
for an FPGA implementation, and for image processing in
general. For an ASIC implementation, having a 1D dot-
product operator per tile is probably the best compromise.

The pipelined implementation of this 2D convolver was
previously described in [10]. Both the kernel and the image
are streams loaded from the memory, and the filter kernels
can be pre-loaded in local caches concurrently to another
operation. Each pixel streaming in the convolver triggers
K ×K parallel operations, when applying K ×K filters.

All the non-linearities in neural networks can be com-
puted with the use of look-up tables or piece-wise linear de-
compositions. A loop-up table associates one output value
for each input value, and therefore requires as much mem-
ory as the range of possible inputs. This is one of the fastest
method to compute a non-linear mapping, but the time re-
quired to reload a new table is prohibitive if different map-
pings are to be computed with the same hardware.

A piece-wise linear decomposition is not as accurate (f
is approximated by g, as in Eq. 2), but only requires a cou-
ple of coefficients ai to represent a simple mapping such
as a hyperbolic tangent, or a square root. It can be repro-
grammed very quickly at runtime, allowing multiple map-
pings to reuse the same hardware. Moreover, if the coeffi-
cients ai follow the constraint given by Eq. 3, the hardware
can be reduced to shifters and adders only.
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g(x) = aix+ bi for x ∈ [li, li+1] (2)

ai =
1

2m
+

1

2n
m,n ∈ [0, 5] (3)

2.3.2 Smart DMA Implementation

A critical part of this architecture is the Direct Memory Ac-
cess (DMA) module. Our Smart DMA module is a full cus-
tom engine that has been designed to allow NDMA ports to
access the external memory totally asynchronously.

A dedicated arbiter is used as hardware Memory Inter-
face to multiplex and demultiplex access to the external
memory with high bandwidth. Subsequent buffers on each
port insure continuity of service on a port while the others
are utilized.

The DMA is smart, because it complements the Con-
trol Unit. Each port of the DMA can be configured to read
or write a particular chunk of data, with an optional stride
(for 2D streams), and communicate its status to the Control
Unit. Although this might seem trivial, it respects one of
the foundations of dataflow computing: while the Control
Unit configures the grid and the DMA ports for each opera-
tion, an operation is driven exclusively by the data, from its
fetching, to its writing back to off-chip memory.

If the PTs are synchronous to the memory bus clock, the
following relationship can be established between the mem-
ory bandwidth BEXT , the number of possible parallel data
transfers MAX(NDMA) and the bits per pixel Pbits:

MAX(NDMA) =
BEXT

Pbits
. (4)

For example Pbits = 16 and BEXT = 128bit/cyc al-
lows MAX(NDMA) = 7 simultaneous transfers.

2.4. LuaFlow: a Compiler for neuFlow

Prior to being run on neuFlow, a given algorithm has to
be converted to a representation that can be interpreted by
the Control Unit to generate controls/configurations for the
system. For that purpose a compiler and dataflow API—
luaFlow 1—were created. LuaFlow is a full-blown compiler
that takes sequential, tree-like or flow-graph descriptions of
algorithms in the Torch5 [5] environment, and parses them
to extract different levels of parallelism. Pattern match-
ing is used to map known sequences of operations to low-
level, pre-optimized routines. Other unknown operators are
mapped in less optimized ways. Once each high-level mod-
ule has been associated with a set of low-level operations,
a static sequence of grid configurations, interspersed with
DMA transfers is produced, and dumped as binary code for
the embedded Control Unit.

1http://www.neuflow.org/category/xlearn/

Extensive research has been done on the question of how
to schedule dataflow computations [22], and how to repre-
sent streams and computations on streams [18]. The prob-
lem can be formulated simply: given a particular graph-type
description of an algorithm, and given a particular imple-
mentation of the dataflow grid, what is the sequence of grid
configurations that yield the shortest computation time?

There are three levels at which computations can be par-
allelized:

• across modules: operators can be cascaded, and mul-
tiple modules can be computed on the fly (average
speedup),

• across images, within a module: can be done if mul-
tiple instances of the required operator exist (poor
speedup, as each independent operation requires its
own input/output streams, which are limited by the
bandwidth to external memory BEXT ),

• within an image: some operators naturally implement
that (the 2D convolver, which performs all the MACs
in parallel), in some cases, multiple tiles can be used
to parallelize computations.

Parallelizing computations across modules can be done
in special cases. For example, linear operations (convolu-
tions) are often followed by non-linear mappings in neural
networks: these two operators (each belonging to a separate
module) can be easily cascaded on the grid. This simple
optimization speeds up the computation by a factor of 2.

Parallelizing computations across images is straightfor-
ward, and done massively by luaFlow. Here is an example
that illustrates that point: given a dataflow grid built with
4 PTs with 2D convolvers, 4 PTs with standard operators,
and 4 PTs with non-linear mappers, we want to compute a
fully-connected filter-bank with 4 inputs and 8 outputs, e.g.
a filer bank where each of the 8 outputs is a sum of 4 inputs,
each convolved with a different kernel:

yj =
3∑

i=0

kij ∗ xi for j ∈ [0, 7]. (5)

For the given hardware, the optimal mapping is: each of
the four 2D convolvers is configured to convolve one of the
three inputs xi with a kernel kij , and a standard PT is con-
figured to accumulate those 4 streams into one and produce
yj .

Parallelizing computations within images is what this
grid is best at: this is the simplest form of parallelism, where
locality in memory is exploited to the maximum.

3. Application to Street Scene Understanding
Several applications were implemented on neuFlow:

from a simple face detector to a pixel-wise obstacle clas-
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Figure 4. A convolutional network for street scene parsing.

sifier [6] and a complete street scene parser, as shown
on Figure 5. Other example applications can be found
at www.neuflow.org.

In this section we focus on the elaboration, training and
implementation of a complete street-scene parser. This
work extends and is strongly inspired by previous work
from Grangier et al. [12]. Scene parsing aims at segment-
ing and recognizing the content of a scene: from objects to
large structures—roads, sky, buildings, cars, etc. In other
words, the goal is to map each pixel of a given input image
to a unique label.

Figure 5. Street scene parsing: a convolutional network was
trained on the LabelMe spanish dataset [26] with a method similar
to [12]. The training set only contains photos from spanish cities;
the image above is a picture taken in Edinburgh. The convolu-
tional network is fully computed on neuFlow, achieving a speedup
of about 100x (500x375 images are processed in 83ms, as opposed
to 8s on a laptop).

Grangier et al. [12] showed that using a deep convolu-
tional network with a greedy layer-wise learning (up to 6
convolutional layers) could yield significantly better results
than simpler 2 or 3-layer systems. We followed a slightly
different method, favoring larger kernels over deeper net-
works, but kept the idea of incrementally growing the net-
work’s capacity.

A subset of the LabelMe dataset [26], containing about
3000 images of spanish cities 2, was used to train this con-

2http://people.csail.mit.edu/torralba/benchmarks/

volutional network. We removed 10% of the set to be used
for validation (testing). The twenty most occurring classes
were extracted, and the goal was set to minimize the pixel
classification error on those classes.

All the images were first resized to 500 × 375, then
400 million patches were randomly sampled to produce a
20×1e8×N ×N tensor where the first dimension indexes
the classes, the second indexes patches of which the center
pixel belongs to the corresponding class, and the last two
dimensions are the height and width of the patch.

The training was done in 3 phases. First: we started
with a simple model, CN1 (table 1), similar to the one
originally proposed in [20]. The model has small kernels
(5×5) and 3 convolutional layers only. This first model was
trained to optimize the pixel-wise cross entropy (negative
log-likelihood) through stochastic gradient descent over the
training set. Minimizing the cross entropy (rather than the
mean-square error) helps promote the categories of rare ap-
pearance. Small kernels, and a few layers allowed the sys-
tem to see 10 million training patches in a couple of hours,
and converge to a reasonable error fairly quickly. With these
parameters, the receptive field of the network is 32 × 32,
which only represents 0.55% of the complete field of view;

Second: all the convolutional kernels were then in-
creased to 9 × 9, by padding the extra weights with zeros:
CN2 (table 2). This increased the receptive field to 60× 60
(about 2% of the image), with the interesting property that
at time 0 of this second training phase, the network was pro-
ducing the same predictions than with the smaller kernels;

Third: a fourth layer was added—a.k.a. greedy layer-
wise learning—which increased the receptive field to 92 ×
92 (5% of the image). This required dropping the previ-
ous linear classifier, and replace it with a new—randomly
initialized—larger classifier.

Performances were evaluated on a separate test set,
which was created using a subset (10%) of the original
dataset. Results are shown on Table 4.

Once trained, the network was passed over to luaFlow,
and transparently mapped to neuFlow. A key advantage of
convolutional networks is that they can be applied to sliding
windows on a large image at very low cost by simply com-
puting convolutions at each layer over the entire image. The
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Layer Kernels: dims [nb] Maps: dims [nb]
Input image 32× 32 [3]
N0 (Norm) 32× 32 [3]
C1 (Conv) 5× 5 [48] 28× 28 [12]
P2 (Pool) 2× 2 [1] 14× 14 [12]
C3 (Conv) 5× 5 [384] 10× 10 [32]
P4 (Pool) 2× 2 [1] 5× 5 [32]
C5 (Conv) 5× 5 [1536] 1× 1 [48]
L (Linear) 1× 1 [960] 1× 1 [20]

Table 1. CN1: base model. N: Local Normalization layer (note:
only the Y channel is normalized, U and V are untouched); C:
convolutional layer; P: pooling (max) layer; L: linear classifier.

Layer Kernels: dims [nb] Maps: dims [nb]
Input image 60× 60 [3]
N0 (Norm) 60× 60 [3]
C1 (Conv) 9× 9 [48] 52× 52 [12]
P2 (Pool) 2× 2 [1] 26× 26 [12]
C3 (Conv) 9× 9 [384] 18× 18 [32]
P4 (Pool) 2× 2 [1] 9× 9 [32]
C5 (Conv) 9× 9 [1536] 1× 1 [48]
L (Linear) 1× 1 [960] 1× 1 [20]

Table 2. CN2: second model. Filters are increased, which doubles
the receptive field

Layer Kernels: dims [nb] Maps: dims [nb]
Input image 92× 92 [3]
N0 (Norm) 92× 92 [3]
C1 (Conv) 9× 9 [48] 84× 84 [12]
P2 (Pool) 2× 2 [1] 42× 42 [12]
C3 (Conv) 9× 9 [384] 34× 34 [32]
P4 (Pool) 2× 2 [1] 17× 17 [32]
C5 (Conv) 9× 9 [1536] 9× 9 [48]
C6 (Conv) 9× 9 [1024] 1× 1 [128]
L (Linear) 1× 1 [960] 1× 1 [20]

Table 3. CN3: a fourth convolutional layer C6 is added, which,
again, increases the receptive field. Note: C6 has sparse connec-
tivity (e.g. each of its 128 outputs is connected to 8 inputs only,
yielding 1024 kernels instead of 6144).

output layer is replicated accordingly, producing one detec-
tion score for every 92 × 92 window on the input, spaced
every 4 pixels. The overall network is depicted in Fig. 4 for
a 500 × 375 input image. Producing the prediction on one
image of that size takes about 8 seconds on a laptop-class
Intel DuoCore 2.66GHz processor; the same prediction is
produced in 83ms on neuFlow, with an average error of
10−2 (quantization noise).

Model CN1 CN2 CN3

CN Error (%) 29.75 26.13 24.26
CN+MST Error (%) 27.17 24.40 23.39

Table 4. Percentage of mislabeled pixels on validation set. CN
Error is the pixelwise error obtained when using the simplest pix-
elwise winner, predicted by the ConvNet. CN+MST Error is the
pixelwise error obtained by histogramming the ConvNet’s predic-
tion into connected components (the components are obtained by
computing the minimum spanning tree of an edge-weighted graph
built on the raw RGB image, and merging its nodes using a surface
criterion, in the spirit of [11]).

4. Performance Comparisons

Table 5 reports a performance comparison for the com-
putation of a typical filter bank operation on multiple plat-
forms: 1- the CPU data was measured from compiled C
code (GNU C compiler and Blas libraries) on a Core 2 Duo
2.66GHz Apple Macbook PRO laptop operating at 90W
(30W for the CPU); 2- the FPGA data was measured on
a Xilinx Virtex-6 VLX240T operating at 200MHz and 10W
(power consumption was measured on the board) ; 3- the
GPU data was obtained from a CUDA-based implementa-
tion running on a laptop-range nVidia GT335m operating
at 1GHz and 30W and on a nVidia GTX480 operating at
1GHz and 220W; 4- the ASIC data is simulation data gath-
ered from an IBM 45nm CMOS process (5×5mm). For an
ASIC-based design with a speed of 400MHz, the projected
power consumption, using post-synthesis data and standard
analysis tools is estimated at 5W.

CPU V6 mGPU IBM GPU
Peak GOPs 10 160 182 1280 1350
Real GOPs 1.1 147 54 1164 294
Power W 30 10 30 5 220
GOPs/W 0.04 14.7 1.8 230 1.34

Table 5. Performance comparison. 1- CPU: Intel DuoCore,
2.7GHz, optimized C code, 2- V6: neuFlow on Xilinx Virtex 6
FPGA—on board power and GOPs measurements; 3- IBM: neu-
Flow on IBM 45nm process: simulated results, the design was
fully placed and routed; 4- mGPU/GPU: two GPU implementa-
tions, a low power GT335m and a high-end GTX480.

The current design was proven at 200MHz on a Xilinx
Virtex 6 ML605 platform, using four 10 × 10 convolver
grids. At this frequency, the peak performance is 80 bil-
lion connections per second, or 160 GMACs. Sustained per-
formances for typical applications (such as the street scene
parser) range from 60 to 120 GMACs, sustained.
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5. Conclusions
We presented a dataflow architecture that was optimized

for the computation of hierarchical filter-bank based visual
models. Different use cases were studied, and it was seen
that compiling convolutional networks was straight-forward
on such an architecture, thanks to their relatively uniform
design.

Because of their applicability to a wide range of tasks,
convolutional networks are perfect candidates for hardware
implementations, and embedded applications, as demon-
strated by the increasing amount of work in this area. We
expect to see many new embedded vision systems based on
convolutional networks in the next few years.

A real-time (12 frames per second) street scene parser
was developed, trained, and implemented on neuFlow. Sat-
isfying results are reported on the standard LabelMe dataset.

Multiple object detection [21] or online learning for
adaptive robot guidance [13] are tasks that are currently
being developed around neuFlow, using and extending the
convolutional network framework.
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