
1

Learning Hierarchical Features
for Scene Labeling

Clément Farabet, Camille Couprie, Laurent Najman, Yann LeCun

Abstract—Scene labeling consists in labeling each pixel in an image with the category of the object it belongs to. We propose a
method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of
multiple sizes centered on each pixel. The method alleviates the need for engineered features, and produces a powerful representation
that captures texture, shape and contextual information. We report results using multiple post-processing methods to produce the final
labeling. Among those, we propose a technique to automatically retrieve, from a pool of segmentation components, an optimal set of
components that best explain the scene; these components are arbitrary, e.g. they can be taken from a segmentation tree, or from any
family of over-segmentations. The system yields record accuracies on the Sift Flow Dataset (33 classes) and the Barcelona Dataset
(170 classes) and near-record accuracy on Stanford Background Dataset (8 classes), while being an order of magnitude faster than
competing approaches, producing a 320× 240 image labeling in less than a second, including feature extraction.

Index Terms—Convolutional networks, deep learning, image segmentation, image classification, scene parsing.

✦

1 INTRODUCTION

IMAGE UNDERSTANDING is a task of primary impor-
tance for a wide range of practical applications. One

important step towards understanding an image is to
perform a full-scene labeling also known as a scene parsing,
which consists in labeling every pixel in the image
with the category of the object it belongs to. After a
perfect scene parsing, every region and every object is
delineated and tagged. One challenge of scene parsing
is that it combines the traditional problems of detection,
segmentation, and multi-label recognition in a single
process.

There are two questions of primary importance in the
context of scene parsing: how to produce good internal
representations of the visual information, and how to use
contextual information to ensure the self-consistency of
the interpretation.

This paper presents a scene parsing system that relies
on deep learning methods to approach both questions.
The main idea is to use a convolutional network [27]
operating on a large input window to produce label hy-
potheses for each pixel location. The convolutional net is
fed with raw image pixels (after band-pass filtering and
contrast normalization), and trained in supervised mode
from fully-labeled images to produce a category for each
pixel location. Convolutional networks are composed
of multiple stages each of which contains a filter bank
module, a non-linearity, and a spatial pooling module.
With end-to-end training, convolutional networks can
automatically learn hierarchical feature representations.

Unfortunately, labeling each pixel by looking at a small
region around it is difficult. The category of a pixel
may depend on relatively short-range information (e.g.

• Clément Farabet, Camille Couprie, and Yann LeCun are with the Courant
Institute of Mathematical Sciences, New York University (New York, NY
10003, USA).

• Clément Farabet and Laurent Najman are with the Laboratoire
d’Informatique Gaspard-Monge, Université Paris-Est, Equipe A3SI,
ESIEE Paris (93160 Noisy-le-Grand, France).
E-mails: cfarabet@cs.nyu.edu, ccouprie@cs.nyu.edu,

l.najman@esiee.fr, yann@cs.nyu.edu

the presence of a human face generally indicates the
presence of a human body nearby), but may also depend
on long-range information. For example, identifying a
grey pixel as belonging to a road, a sidewalk, a gray car,
a concrete building, or a cloudy sky requires a wide con-
textual window that shows enough of the surroundings
to make an informed decision. To address this problem,
we propose to use a multi-scale convolutional network,
which can take into account large input windows, while
keeping the number of free parameters to a minimum.

Common approaches to scene parsing first produce
segmentation hypotheses using graph-based methods.
Candidate segments are then encoded using engineered
features. Finally, a conditional random field (or some
other type of graphical model), is trained to produce
labels for each candidate segment, and to ensure that
the labelings are globally consistent.

A striking characteristic of the system proposed here
is that the use of a large contextual window to label
pixels reduces the requirement for sophisticated post-
processing methods that ensure the consistency of the
labeling.

More precisely, the proposed scene parsing
architecture is depicted on Figure 1. It relies on
two main components:

1) Multi-scale, convolutional representation: our
multi-scale, dense feature extractor produces a series of
feature vectors for regions of multiple sizes centered
around every pixel in the image, covering a large
context. The multi-scale convolutional net contains
multiple copies of a single network (all sharing the
same weights) that are applied to different scales of a
Laplacian pyramid version of the input image. For each
pixel, the networks collectively encode the information
present in a large contextual window around the given
pixel (184 × 184 pixels in the system described here).
The convolutional network is fed with raw pixels
and trained end to end, thereby alleviating the need
for hand-engineered features. When properly trained,
these features produce a representation that captures
texture, shape and contextual information. While using

2

a multiscale representation seems natural for FSL, it
has rarely been used in the context of feature learning
systems. The multiscale representation that is learned
is sufficiently complete to allow the detection and
recognition of all the objects and regions in the scene.
However, it does not accurately pinpoint the boundaries
of the regions, and requires some post-processing to
yield cleanly delineated predictions.

2) Graph-based classification:
An over-segmentation is constructed from the image,

and is used to group the feature descriptors. Several
over-segmentations are considered, and three techniques
are proposed to produce the final image labeling.

2.a. Superpixels: The image is segmented into disjoint
components, widely over-segmenting the scene. In this
scenario, a pixelwise classifier is trained on the convo-
lutional feature vectors, and a simple vote is done for
each component, to assign a single class per component.
This method is simple and effective, but imposes a fixed
level of segmentation, which can be suboptimal.

2.b. Conditional random field over superpixels: a
conditional random field is defined over a set of super-
pixels. Compared to the previous, simpler method, this
post-processing models joint probabilities at the level
of the scene, and is useful to avoid local aberrations
(e.g. a person in the sky). That kind of approach is
widely used in the computer vision community, and we
show that our learned multiscale feature representation
essentially makes the use of a global random field much
less useful: most scene-level relationships seem to be
already captured by it.

2.c. Multilevel cut with class purity criterion: A
family of segmentations is constructed over the image
to analyze the scene at multiple levels. In the simplest
case, this family might be a segmentation tree; in the
most general case it can be any set of segmentations,
for example a collection of superpixels either produced
using the same algorithm with different parameter
tunings or produced by different algorithms. Each
segmentation component is represented by the set
of feature vectors that fall into it: the component is
encoded by a spatial grid of aggregated feature vectors.
The aggregated feature vector of each grid cell is
computed by a component-wise max pooling of the
feature vectors centered on all the pixels that fall into the
grid cell. This produces a scale-invariant representation
of the segment and its surrounding. A classifier is then
applied to the aggregated feature grid of each node.
This classifier is trained to estimate the histogram of all
object categories present in the component. A subset of
the components is then selected such that they cover
the entire image. These components are selected so
as to minimize the average “impurity” of the class
distribution in a procedure that we name “optimal
cover”. The class “impurity” is defined as the entropy
of the class distribution. The choice of the cover thus
attempts to find a consistent overall segmentation in
which each segment contains pixels belonging to only
one of the learned categories. This simple method allows
us to consider full families of segmentation components,
rather than a unique, predetermined segmentation (e.g.
a single set of superpixels).

All the steps in the process have a complexity linear
(or almost linear) in the number of pixels. The bulk of
the computation resides in the convolutional network
feature extractor. The resulting system is very fast,
producing a full parse of a 320× 240 image in less than
a second on a conventional CPU, and in less than 100ms
using dedicated hardware, opening the door to real-time
applications. Once trained, the system is parameter free,
and requires no adjustment of thresholds or other knobs.

An early version of this work was first published
in [7]. This journal version reports more complete ex-
periments, comparisons and higher results.

2 RELATED WORK

The scene parsing problem has been approached with a
wide variety of methods in recent years. Many methods
rely on MRFs, CRFs, or other types of graphical models
to ensure the consistency of the labeling and to account
for context [19], [39], [15], [25], [32], [44], [30]. Most
methods rely on a pre-segmentation into superpixels
or other segment candidates, and extract features and
categories from individual segments and from various
combinations of neighboring segments. The graphical
model inference pulls out the most consistent set of
segments which covers the image.

[43] proposed a method to aggregate segments in a
greedy fashion using a trained scoring function. The
originality of the approach is that the feature vector
of the combination of two segments is computed from
the feature vectors of the individual segments through
a trainable function. Like us, they use “deep learning”
methods to train their feature extractor. But unlike us,
their feature extractor operates on hand-engineered fea-
tures.

One of the main question in scene parsing is how
to take a wide context into account to make a local
decision. [32] proposed to use the histogram of labels
extracted from a coarse scale as input to the labeler
that looks at finer scales. Our approach is somewhat
simpler: our feature extractor is applied densely to an
image pyramid. The coarse feature maps thereby gen-
erated are upsampled to match that of the finest scale.
Hence with three scales, each feature vector has multiple
fields which encode multiple regions of increasing sizes
and decreasing resolutions, centered on the same pixel
location.

Like us, a number of authors have used families of
segmentations or trees to generate candidate segments
by aggregating elementary segments. The approaches of
[39], [30] rely on inference algorithms based on Graph
Cuts to label images using trees of segmentation. Other
strategies using families of segmentations appeared in
[36], [5]. None of the previous strategies for scene la-
beling used a purity criterion on the class distributions.
Combined to the optimal cover strategy, this purity
criterion is general, efficient and could be applied to
solve different problems.

Contrary to the previously cited approaches using
engineered features, our system extracts features densely
from a multiscale pyramid of images using a convolu-
tional network (ConvNet) [27]. These networks can be
fed with raw pixels and can automatically learn low-
level and mid-level features, alleviating the need for

3

 X1

 X2

 X3 F3

I

convnet

 F1

F2

F

 f1 (X1;!1)

 f2 (X2;!2)

 f3 (X3;!3)

pyramid

g (I)

C1 C2 C3 C4

C6 C7

C9

C5

C8
segmentation

h (I)

labeling

l (F, h (I))

superpixels tree T,{Ck}

or

Fig. 1. Diagram of the scene parsing system. The raw input image is transformed through a Laplacian pyramid.
Each scale is fed to a 3-stage convolutional network, which produces a set of feature maps. The feature maps of all
scales are concatenated, the coarser-scale maps being upsampled to match the size of the finest-scale map. Each
feature vector thus represents a large contextual window around each pixel. In parallel, a single segmentation (i.e.
superpixels), or a family of segmentations (e.g. a segmentation tree) are computed to exploit the natural contours of
the image. The final labeling is produced from the feature vectors and the segmentation(s) using different methods,
as presented in section 4.

hand-engineered features. One of their advantage is the
ability to compute dense features efficiently over large
images. They are best known for their applications to
detection and recognition [47], [14], [35], [21], but they
have also been used for image segmentation, particularly
for biological image segmentation [34], [20], [46].

The only previously published work on using con-
volutional networks for scene parsing is that of [17].
While somewhat preliminary, their work showed that
convolutional networks fed with raw pixels could be
trained to perform scene parsing with decent accuracy.
Unlike [17] however, our system uses a boundary-based
hierarchy of segmentations to align the labels produced
by the network to the boundaries in the image and thus
produces representations that are independent of the size
of the segments through feature pooling. Slightly after
[8], Schulz and Behnke proposed a similar architecture
of a multiscale convolutional network for scene parsing
[40]. Unlike us, they use pairwise class location filters
to predict the final segmentation, instead of using the
image gradient that we found to be more accurate.

3 MULTISCALE FEATURE EXTRACTION FOR

SCENE PARSING

The model proposed in this paper, depicted on Figure 1,
relies on two complementary image representations. In
the first representation, an image patch is seen as a point
in R

P , and we seek to find a transform f : RP → R
Q

that maps each patch into R
Q, a space where it can

be classified linearly. This first representation typically
suffers from two main problems when using a classi-
cal convolutional network, where the image is divided
following a grid pattern: (1) the window considered
rarely contains an object that is properly centered and
scaled, and therefore offers a poor observation basis to
predict the class of the underlying object, (2) integrating
a large context involves increasing the grid size, and
therefore the dimensionality P of the input; given a

finite amount of training data, it is then necessary to
enforce some invariance in the function f itself. This is
usually achieved by using pooling/subsampling layers,
which in turn degrades the ability of the model to
precisely locate and delineate objects. In this paper, f
is implemented by a multiscale convolutional network,
which allows integrating large contexts (as large as the
complete scene) into local decisions, yet still remaining
manageable in terms of parameters/dimensionality. This
multiscale model, in which weights are shared across
scales, allows the model to capture long-range interac-
tions, without the penalty of extra parameters to train.
This model is described in Section 3.1.

In the second representation, the image is seen as an
edge-weighted graph, on which one or several over-
segmentations can be constructed. The components are
spatially accurate, and naturally delineate the underly-
ing objects, as this representation conserves pixel-level
precision. Section 4 describes multiple strategies to com-
bine both representations. In particular, we describe in
Section 4.3 a method for analyzing a family of segmenta-
tions (at multiple levels). It can be used as a solution to
the first problem exposed above: assuming the capability
of assessing the quality of all the components in this
family of segmentations, a system can automatically
choose its components so as to produce the best set of
predictions.

3.1 Scale-invariant, scene-level feature extraction

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs,
motifs into parts, parts into objects, and objects into
scenes. This suggests that recognition architectures for
vision (and for other modalities such as audio and
natural language) should have multiple trainable stages
stacked on top of each other, one for each level in the
feature hierarchy. Convolutional Networks (ConvNets)
provide a simple framework to learn such hierarchies of
features.

4

Convolutional Networks [26], [27] are trainable archi-
tectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps.
For example, if the input is a color image, each feature
map would be a 2D array containing a color channel of
the input image (for an audio input each feature map
would be a 1D array, and for a video or volumetric
image, it would be a 3D array). At the output, each
feature map represents a particular feature extracted at
all locations on the input. Each stage is composed of
three layers: a filter bank layer, a non-linearity layer, and
a feature pooling layer. A typical ConvNet is composed
of one, two or three such 3-layer stages, followed by a
classification module. Because they are trainable, arbi-
trary input modalities can be modeled, beyond natural
images.

Our feature extractor is a three-stage convolutional
network. The first two stages contain a bank of filters
producing multiple feature maps, a point-wise non-
linear mapping and a spatial pooling followed by sub-
sampling of each feature map. The last layer only con-
tains a bank of filters. The filters (convolution kernels)
are subject to training. Each filter is applied to the
input feature maps through a 2D convolution operation,
which detects local features at all locations on the input.
Each filter bank of a convolutional network produces
features that are equivariant under shifts, i.e. if the
input is shifted, the output is also shifted but otherwise
unchanged.

While convolutional networks have been used success-
fully for a number of image labeling problems, image-
level tasks such as full-scene understanding (pixel-wise
labeling, or any dense feature estimation) require the
system to model complex interactions at the scale of
complete images, not simply within a patch. To view
a large contextual window at full resolution, a convolu-
tional network would have to be unmanageably large.

The solution is to use a multiscale approach. Our
multiscale convolutional network overcomes these limi-
tations by extending the concept of spatial weight repli-
cation to the scale space. Given an input image I, a
multiscale pyramid of images Xs, ∀s ∈ {1, . . . , N} is
constructed, where X1 has the size of I. The multiscale
pyramid can be a Laplacian pyramid, and is typically
pre-processed, so that local neighborhoods have zero
mean and unit standard deviation. Given a classical
convolutional network fs with parameters θs, the multi-
scale network is obtained by instantiating one network
per scale s, and sharing all parameters across scales:
θs = θ0, ∀s ∈ {1, . . . , N}.

We introduce the following convention: banks of im-
ages will be seen as three dimensional arrays in which
the first dimension is the number of independent feature
maps, or images, the second is the height of the maps
and the third is the width. The output state of the L-th
stage is denoted HL.

The maps in the pyramid are computed using a
scaling/normalizing function gs as Xs = gs(I), for all
s ∈ {1, . . . , N}.

For each scale s, the convolutional network fs can
be described as a sequence of linear transforms, inter-
spersed with non-linear symmetric squashing units (typ-
ically the tanh function [28]), and pooling/subsampling
operators. For a network fs with L layers, we have:

fs(Xs; θs) = WLHL−1, (1)

where the vector of hidden units at layer l is

Hl = pool(tanh(WlHl−1 + bl)) (2)

for all l ∈ {1, . . . , L − 1}, with bl a vector of bias
parameters, and H0 = Xs. The matrices Wl are Toeplitz
matrices, therefore each hidden unit vector Hl can be
expressed as a regular convolution between kernels from
Wl and the previous hidden unit vector Hl−1, squashed
through a tanh, and pooled spatially. More specifically,

Hlp = pool(tanh(blp +
∑

q∈parents(p)

wlpq ∗Hl−1,q)). (3)

The filters Wl and the biases bl constitute the trainable
parameters of our model, and are collectively denoted
θs. The function tanh is a point-wise non-linearity, while
pool is a function that considers a neighborhood of
activations, and produces one activation per neighbor-
hood. In all our experiments, we use a max-pooling
operator, which takes the maximum activation within
the neighborhood. Pooling over a small neighborhood
provides built-in invariance to small translations.

Finally, the outputs of the N networks are upsampled
and concatenated so as to produce F, a map of feature
vectors of size N times the size of f1, which can be seen
as local patch descriptors and scene-level descriptors

F = [f1, u(f2), . . . , u(fN)], (4)

where u is an upsampling function.
As mentioned above, weights are shared between net-

works fs. Intuitively, imposing complete weight sharing
across scales is a natural way of forcing the network
to learn scale invariant features, and at the same time
reduce the chances of over-fitting. The more scales used
to jointly train the models fs(θs) the better the represen-
tation becomes for all scales. Because image content is,
in principle, scale invariant, using the same function to
extract features at each scale is justified.

3.2 Learning discriminative scale-invariant features

As described in Section 3.1, feature vectors in F are
obtained by concatenating the outputs of multiple net-
works fs, each taking as input a different image in a
multiscale pyramid.

Ideally a linear classifier should produce the correct
categorization for all pixel locations i, from the feature
vectors Fi. We train the parameters θs to achieve this
goal, using the multiclass cross entropy loss function. Let
ĉi be the normalized prediction vector from the linear
classifier for pixel i. We compute normalized predicted
probability distributions over classes ĉi,a using the soft-
max function, i.e.

ĉi,a =
ew

T
a Fi

∑
b∈classes e

wT
b
Fi

, (5)

where w is a temporary weight matrix only used to learn
the features. The cross entropy between the predicted
class distribution ĉ and the target class distribution c
penalizes their deviation and is measured by

5

class predictions
F

classifier

2 layer - mlp

average

across

super-

pixels

superpixels

argmax

Fig. 2. First labeling strategy from the features: using
superpixels as described in Section 4.1.

Lcat = −
∑

i∈pixels

∑

a∈classes

ci,a ln(ĉi,a). (6)

The true target probability ci,a of class a to be present
at location i can either be a distribution of classes at
location i, in a given neighborhood or a hard target
vector: ci,a = 1 if pixel i is labeled a, and 0 otherwise.
For training maximally discriminative features, we use
hard target vectors in this first stage.

Once the parameters θs are trained, the classifier in
Eq 5 is discarded, and the feature vectors Fi are used
using different strategies, as described in Section 4.

4 SCENE LABELING STRATEGIES

The simplest strategy for labeling the scene is to use the
linear classifier described in Section 3.2, and assign each
pixel with the argmax of the prediction at its location.
More specifically, for each pixel i

li = argmax
a∈classes

ĉi,a (7)

The resulting labeling l, although fairly accurate, is not
satisfying visually, as it lacks spatial consistency, and
precise delineation of objects. In this section, we explore
three strategies to produce spatially more appealing
labelings.

4.1 Superpixels

Predicting the class of each pixel independently from
its neighbors yields noisy predictions. A simple cleanup
can be obtained by forcing local regions of same color
intensities to be assigned a single label.

As in [13], [16], we compute superpixels, following
the method proposed by [11], to produce an over-
segmentation of the image. We then classify each location
of the image densely, and aggregate these predictions in
each superpixel, by computing the average class distri-
bution within the superpixel.

For this method, the pixelwise distributions d̂k at
superpixel k are predicted from the feature vectors Fi

using a two-layer neural network:

yi = W2 tanh(W1Fi + b1), (8)

d̂i,a =
eyi,a

∑
b∈classes e

yi,b
, (9)

Lcat = −
∑

i∈pixels

∑

a∈classes

di,a ln(d̂i,a), (10)

d̂k,a =
1

s(k)

∑

i∈k

d̂i,a, (11)

with di the groundtruth distribution at location i, and
s(k) the surface of component k. Matrices W1 and W2

are the trainable parameters of the classifier. Using a two-
layer neural network, as opposed to the simple linear
classifier used in Section 3.2, allows the system to capture
non-linear relationships between the features at different
scales. In this case, the final labeling for each component
k is given by

lk = argmax
a∈classes

d̂k,a. (12)

The pipeline is depicted in Figure 2.

4.2 Conditional Random Fields

The local assignment obtained using superpixels does
not involve a global understanding of the scene. In
this section, we implement a classical CRF model, con-
structed on the superpixels. This is a quite standard ap-
proach for image labeling. Our multi-scale convolutional
network already has the capability of modeling global
relationships within a scene, but might still be prone to
errors, and can benefit from a CRF, to impose consistency
and coherency between labels, at test time.

A common strategy for labeling a scene consists in
associating the image to a graph and define an energy
function whose optimal solution corresponds to the de-
sired segmentation [41], [13].

For this purpose, we define a graph G = (V,E) with
vertices v ∈ V and edges e ∈ E ⊆ V × V . Each pixel
in the image is associated to a vertex, and edges are
added between every neighboring nodes. An edge, e,
spanning two vertices, vi and vj , is denoted by eij .
The Conditional Random Field (CRF) energy function
is typically composed of a unary term enforcing the
variable l to take values close to the predictions d̂ and
a pairwise term enforcing regularity or local consistency
of l. The CRF energy to minimize is given by

E(l) =
∑

i∈V

Φ(d̂i, li) + γ
∑

eij∈E

Ψ(li, lj) (13)

We considered as unary terms

Φ(d̂i,a, li) = exp (−αd̂i,a)1(li 6= a), (14)

where d̂i,a corresponds to the probability of class a to
be present at a pixel i computed as in Section 4.1, and
1(·) is an indicator function that equals one if the input
is true, and zero otherwise.

The pairwise term consists in

Ψ(li, lj) = exp (−β‖∇I‖i)1(li 6= lj) (15)

where ‖∇I‖i is the ℓ2 norm of the gradient of the image
I at a pixel i. Details on the parameters used are given
in the experimental section.

The CRF energy (13) is minimized using alpha-
expansions [4], [3]. An illustration of the procedure
appears in Figure 3.

6

class predictions

F

classifier
2 layer - mlp

energy
minimization in
the graph via
α-expansion

I

image gradient

unary weights

pairwise weights

average

across super

pixels

Fig. 3. Second labeling strategy from the features: using a CRF, described in Section 4.2.

4.3 Parameter-free multilevel parsing

One problem subsists with the two methods presented
above: the observation level problem. An object, or object
part, can be easily classified once it is segmented at
the right level. The two methods above are based on
an arbitrary segmentation of the image, which typically
decomposes it into segments that are too small, or, more
rarely, too large.

In this section, we propose a method to analyze a
family of segmentations and automatically discover the
best observation level for each pixel in the image. One
special case of such families is the segmentation tree,
in which components are hierarchically organized. Our
method is not restricted to such trees, and can be used
for arbitrary sets of neighborhoods.

In Section 4.3.1 we formulate the search for the most
adapted neighborhood of a pixel as an optimization
problem. The construction of the cost function that is
minimized is then described in Section 4.3.2.

4.3.1 Optimal purity cover

We define the neighborhood of a pixel as a connected
component that contains this pixel. Let Ck, ∀k ∈
{1, . . . ,K} be the set of all possible connected compo-
nents of the lattice defined on image I , and let Sk be
a cost associated to each of these components. For each
pixel i, we wish to find the index k∗(i) of the component
that best explains this pixel, that is, the component with
the minimal cost Sk∗(i):

k∗(i) = argmin
k | i∈Ck

Sk (16)

Note that components Ck∗(i) are non-disjoint sets that
form a cover of the lattice. Note also that the overall cost
S∗ =

∑
i Sk∗(i) is minimal.

In practice, the set of components Ck is too large,
and only a subset of it can be considered. A classical
technique to reduce the set of components is to con-
sider a hierarchy of segmentations [33], [1], that can be
represented as a tree T . This was previously explored
in [7]. Solving Eq 16 on T consists in the following
procedure: for each pixel (leaf) i, the optimal component
Ck∗(i) is the one along the path between the leaf and
the root with minimal cost Sk∗(i). The optimal cover
is the union of all these components. For efficiency
purposes, it can be done simply by exploring the tree in
a depth-first search manner, and finding the component
with minimal weight along each branch. The complexity
of the optimal cover procedure is then linear in the

 {Ok}

optimal cover

F

T,{Ck}

C1 C2 C3 C4

C6 C7

C9

C5

C8

 T,{dk,Sk}^

S1 S2 S3 S4

S6 S7

S9

S5

S8

{dk*(i),Sk*(i)}

S1 S2 S3 S4

S6 S7

S9

S5

S8

^

masking/pooling

a (Ck,F)

classifier

c (Ok;!c)

labeling

l (F,T,{Ck})

Fig. 4. Third labeling strategy from the features: using a
family of of segmentations, as described in Section 4.3.
On this figure, the family of segmentations is a segmen-
tation tree. The segment associated with each node in
the tree is encoded by a spatial grid of feature vectors
pooled in the segment’s region. A classifier is then applied
to all the aggregated feature grids to produce a histogram
of categories, the entropy of which measures the “impu-
rity” of the segment. Each pixel is then labeled by the
minimally-impure node above it, which is the segment that
best “explains” the pixel.

7

C7

C5 C6

C1 C2 C3 C4
min min min min

0.8

.3 .5

.2 .4 .2 .1

Optimal cover:

{C1, C3, C4, C5}

Fig. 5. Finding the optimal cover on a tree. The numbers
next to the components correspond to the entropy scores
Si. For each pixel (leaf) i, the optimal component Ck∗(i)

is the one along the path between the leaf and the root
with minimal cost Sk∗(i). The optimal cover is the union
of all these components. In this example, the optimal
cover {C1, C3, C4, C5} will result in a segmentation in
disjoint sets {C1, C2, C3, C4}, with the subtle difference
that component C2 will be labelled with the class of C5, as
C5 is the best observation level for C2. The generalization
to a family of segmentations is straightforward (see text).

number of components in the tree. Figure 5 illustrates
the procedure.

Another technique to reduce the set of components
considered is to compute a set of segmentations using
different merging thresholds. In Section 5, we use such
an approach, by computing multiple levels of the Felzen-
szwalb algorithm [11]. The Felzenszwalb algorithm is
not strictly monotonic, so the structure obtained cannot
be cast into a tree: rather, it has a general graph form,
in which each pixel belongs to as many superpixels as
levels explored. Solving Eq 16 in this case consists in
the following procedure: for each pixel i, the optimal
component Ck∗(i) is the one among all the segmentations
with minimal cost Sk∗(i). Thus the complexity to produce
a cover on the family of components is linear on the
number of pixels, but with a constant that is proportional
to the number of levels explored.

4.3.2 Producing the confidence costs

Given a set of components Ck, we explain how to
produce all the confidence costs Sk. These costs represent
the class purity of the associated components. Given the
groundtruth segmentation, we can compute the cost as
being the entropy of the distribution of classes present
in the component. At test time, when no groundtruth
is available, we need to define a function that can
predict this cost by simply looking at the component.
We now describe a way of achieving this, as illustrated
in Figure 6.

Given the scale-invariant features F, we define a
compact representation to describe objects as an elastic
spatial arrangement of such features. In other terms, an
object, or category in general, can be best described as
a spatial arrangement of features, or parts. We define
a simple attention function a used to mask the feature
vector map with each component Ck, producing a set
of K masked feature vector patterns {F

⋂
Ck}, ∀k ∈

{1, . . . ,K}. The function a is called an attention func-
tion because it suppresses the background around the
component being analyzed. The patterns {F

⋂
Ck} are

resampled to produce fixed-size representations. In our
model the sampling is done using an elastic max-pooling

Ok

F

Ck

 F⋂Ck pooling

Fig. 6. The shape-invariant attention function a. For each
component Ck in the family of segmentations T , the
corresponding image segment is encoded by a spatial
grid of feature vectors that fall into this segment. The
aggregated feature vector of each grid cell is computed
by a component-wise max pooling of the feature vectors
centered on all the pixels that fall into the grid cell; this
produces a scale-invariant representation of the segment
and its surroundings. The result, Ok, is a descriptor that
encodes spatial relations between the underlying object’s
parts. The grid size was set to 3×3 for all our experiments.

function, which remaps input patterns of arbitrary size
into a fixed G×G grid. This grid can be seen as a highly
invariant representation that encodes spatial relations
between an object’s attributes/parts. This representation
is denoted Ok. Some nice properties of this encoding are:
(1) elongated, or in general ill-shaped objects, are nicely
handled, (2) the dominant features are used to represent
the object, combined with background subtraction, the
features pooled represent solid basis functions to recog-
nize the underlying object.

Once we have the set of object descriptors Ok, we
define a function c : Ok → [0, 1]Nc (where Nc is
the number of classes) as predicting the distribution of
classes present in component Ck. We associate a cost Sk

to this distribution. In this paper, c is implemented as
a simple 2-layer neural network, and Sk is the entropy
of the predicted distribution. More formally, let Ok be
the feature vector associated with component Ck, d̂k the
predicted class distribution, and Sk the cost associated
to this distribution. We have

yk = W2 tanh(W1Ok + b1), (17)

d̂k,a =
eyk,a

∑
b∈classes e

yk,b
, (18)

Sk = −
∑

a∈classes

dk,a ln(d̂k,a), (19)

with dk the groundtruth distribution for component
k. Matrices W1 and W2 are noted θc, and represent
the trainable parameters of c. These parameters need
to be learned over the complete set of segmentation
families, computed on the entire training set available.
The training procedure is described in Section 4.3.3.

For each component Ck chosen by the optimal purity
cover (Section 4.3.1) the label is produced by:

lk = argmax
a∈classes

d̂k,a Ck ∈ cut. (20)

4.3.3 Training procedure

Let F be the set of all feature maps in the training
set, and T the set of all families of segmentations. We

8

construct the segmentation collections (T)T∈T on the
entire training set, and, for all T ∈ T train the classifier
c to predict the distribution of classes in component
Ck ∈ T , as well as the costs Sk.

Given the trained parameters θs, we build F and T ,
i.e. we compute all vector maps F and segmentation
collections T on all the training data available, so as
to produce a new training set of descriptors Ok. This
time, the parameters θc of the classifier c are trained to
minimize the KL-divergence between the true (known)
distributions of labels dk in each component, and the
prediction from the classifier d̂k (Eq 18):

ldiv =
∑

a∈classes

d̂k,aln(
d̂k,a

dk,a

). (21)

In this setting, the groundtruth distributions dk are
not hard target vectors, but normalized histograms of
the labels present in component Ck. Once the parameters
θc are trained, d̂k accurately predicts the distribution of
labels, and Eq 19 is used to assign a purity cost to the
component.

5 EXPERIMENTS

We report our semantic scene understanding results
on three different datasets: “Stanford Background” on
which related state-of-the-art methods report classifica-
tion errors, and two more challenging datasets with a
larger number of classes: “SIFT Flow” and “Barcelona”.
The Stanford Background dataset [15] contains 715 im-
ages of outdoor scenes composed of 8 classes, chosen
from other existing public datasets so that all the images
are outdoor scenes, have approximately 320×240 pixels,
where each image contains at least one foreground ob-
ject. We use the evaluation procedure introduced in [15],
5-fold cross validation: 572 images used for training, and
143 for testing. The SIFT Flow dataset [31] is composed
of 2, 688 images, that have been thoroughly labeled by
LabelMe users, and split in 2, 488 training images and
200 test images. The authors used synonym correction
to obtain 33 semantic labels. The Barcelona dataset, as
described in [44], is derived from the LabelMe subset
used in [38]. It has 14, 871 training and 279 test images.
The test set consists of street scenes from Barcelona,
while the training set ranges in scene types but has no
street scenes from Barcelona. Synonyms were manually
consolidated by [44] to produce 170 unique labels.

To evaluate the representation from our multiscale
convolutional network, we report results from several
experiments on the Stanford Background dataset: (1) a
system based on a plain convolutional network alone; (2)
the multiscale convolutional network presented in Sec-
tion 3.1, with raw pixelwise prediction; (3) superpixel-
based predictions, as presented in Section 4.1; (4) CRF-
based predictions, as presented in Section 4.2; (5) cover-
based predictions, as presented in Section 4.3.

Results are reported in Table 1, and compared with
related works. Our model achieves very good results in
comparison with previous approaches. Methods of [25],
[30] achieve similar or better performances on this partic-
ular dataset but to the price of several minutes to parse
one image.

Pixel Acc. Class Acc. CT (sec.)
Gould et al. 2009 [15] 76.4% - 10 to 600s
Munoz et al. 2010 [32] 76.9% 66.2% 12s
Tighe et al. 2010 [44] 77.5% - 10 to 300s

Socher et al. 2011 [43] 78.1% - ?
Kumar et al. 2010 [25] 79.4% - < 600s

Lempitzky et al. 2011 [30] 81.9% 72.4% > 60s

singlescale convnet 66.0 % 56.5 % 0.35s
multiscale convnet 78.8 % 72.4% 0.6s

multiscale net + superpixels 80.4% 74.56% 0.7s
multiscale net + gPb + cover 80.4% 75.24% 61s
multiscale net + CRF on gPb 81.4% 76.0% 60.5s

TABLE 1
Performance of our system on the Stanford Background
dataset [15]: per-pixel / average per-class accuracy. The
third column reports compute times, as reported by the
authors. Our algorithms were computed using a 4-core

Intel i7.

Pixel Acc. Class Acc.
Liu et al. 2009 [31] 74.75% -

Tighe et al. 2010 [44] 76.9% 29.4%
raw multiscale net1 67.9% 45.9%

multiscale net + superpixels1 71.9% 50.8%
multiscale net + cover1 72.3% 50.8%
multiscale net + cover2 78.5% 29.6%

TABLE 2
Performance of our system on the SIFT Flow dataset

[31]: per-pixel / average per-class accuracy. Our
multiscale network is trained using two sampling

methods: 1balanced frequencies, 2natural frequencies.
We compare the results of our multiscale network with

the raw (pixelwise) classifier, Felzenszwalb
superpixels [11] (one level), and our optimal cover

applied to a stack of 10 levels of Felzenszwalb
superpixels. Note: the threshold for the single level was
picked to yield the best results; the cover automatically

finds the best combination of superpixels.

We then demonstrate that our system scales nicely
when augmenting the number of classes on two other
datasets, in Tables 2 and 3. Results on these datasets
were obtained using our cover-based method, from Sec-
tion 4.3. Example parses on the SIFT Flow dataset are
shown on Figure 9.

For the SIFT Flow and Barcelona datasets, we ex-
perimented with two sampling methods when learning
the multiscale features: respecting natural frequencies of
classes, and balancing them so that an equal amount of
each class is shown to the network. Balancing class oc-
currences is essential to model the conditional likelihood
of each class (i.e. ignore their prior distribution). Both
results are reported in Table 2. Training with balanced
frequencies allows better discrimination of small objects,
and although it decreases the overall pixelwise accuracy,
it is more correct from a recognition point of view.
Frequency balancing is used on the Stanford Background
dataset, as it consistently gives better results. For the
Barcelona dataset, both sampling methods are used as
well, but frequency balancing worked rather poorly in
that case. This can be explained by the fact that this
dataset has a large amount of classes with very few
training examples. These classes are therefore extremely

9

(a) Image (b) Superpixels

(c) Groundtruth (d) Threshold in gPb hierarchy

(e) CRF in gPb hierarchy (f) MinCover in gPb hierarchy

Building Sky Grass Mountain Tree ObjectLegend:

Fig. 7. Example of results on the Stanford background dataset. (b),(d) and (f) show results with different labeling
strategies, overlaid with superpixels (cf Section 4.1), segments results of a threshold in the gPb hierarchy [1], and
segments recovered by the maximum purity approach with an optimal cover (cf 4.3). The result (c) is obtained with a
CRF on the superpixels shown in (d), as described in Section 4.2.

hard to model, and overfitting occurs much faster than
for the SIFT Flow dataset. Results are shown on Table 3.

Results in Table 1 demonstrate the impressive com-
putational advantage of convolutional networks over
competing algorithms. Exploiting the parallel structure
of this special network, by computing convolutions in
parallel, allows us to parse an image of size 320×240 in
less than one second on a 4-core Intel i7 laptop. Using
GPUs or other types of dedicated hardware, our scene
parsing model can be run in real-time (i.e. at more than
10fps).

5.1 Multiscale feature extraction

For all experiments, we use a 3-stage convolutional net-
work. The first two layers of the network are composed
of a bank of filters of size 7×7 followed by tanh units and
2× 2 max-pooling operations. The last layer is a simple

filter bank. The filters and pooling dimensions were
chosen by a grid search. The input image is transformed
into YUV space, and a Laplacian pyramid is constructed
from it. The Y, U and V channels of each scale in
the pyramid are then independently locally normalized,
such that each local 15×15 patch has zero-mean and unit
variance. For these experiments, the pyramid consists
of 3 rescaled versions of the input (N = 3), in octaves:
320× 240,160× 120, 80× 60.

The network is then applied to each 3-dimension
input map Xs. This input is transformed into a 16-
dimension feature map, using a bank of 16 filters, 10
connected to the Y channel, the 6 others connected to
the U and V channels. The second layer transforms this
16-dimension feature map into a 64-dimension feature
map, each map being produced by a combination of 8
randomly selected feature maps from the previous layer.
Finally the 64-dimension feature map is transformed into

10

Fig. 8. More results using our multiscale convolutional network and a flat CRF on the Stanford Background Dataset.

Pixel Acc. Class Acc.
Tighe et al. 2010 [44] 66.9% 7.6%
raw multiscale net1 37.8% 12.1%

multiscale net + superpixels1 44.1% 12.4%
multiscale net + cover1 46.4% 12.5%
multiscale net + cover2 67.8% 9.5%

TABLE 3
Performance of our system on the Barcelona

dataset [44]: per-pixel / average per-class accuracy. Our
multiscale network is trained using two sampling

methods: 1balanced frequencies, 2natural frequencies.
We compare the results of our multiscale network with

the raw (pixelwise) classifier, Felzenszwalb
superpixels [11] (one level), and our optimal cover

applied to a stack of 10 levels of Felzenszwalb
superpixels. Note: the threshold for the single level was
picked to yield the best results; the cover automatically

finds the best combination of superpixels.

a 256-dimension feature map, each map being produced
by a combination of 32 randomly selected feature maps
from the previous layer.

The outputs of each of the 3 networks are then upsam-
pled and concatenated, so as to produce a 256×3 = 768-
dimension feature vector map F. Given the filter sizes,
the network has a field of view of 46× 46, at each scale,
which means that a feature vector in F is influenced by
a 46×46 neighborhood at full resolution, a 92×92 neigh-
borhood at half resolution, and a 184×184 neighborhood
at quarter resolution. These neighborhoods are shown in
Figure 1.

The network is trained on all 3 scales in parallel, using
stochastic gradient descent with no second-order infor-
mation, and mini-batches of size 1. Simple grid-search
was performed to find the best learning rate (10−3) and
regularization parameters (L2 coefficient: 10−5), using a
holdout of 10% of the training data for validation. The
holdout is also used to select the best network, i.e. the
network that generalizes the most on the holdout.

Convergence, that is, maximum generalization perfor-
mance, is typically attained after between 10 to 50 mil-
lion patches have been seen during stochastic gradient

descent. This typically represents between two to five
days of training. No special hardware (GPUs) was used
for training.

The convolutional network has roughly 0.5 million
trainable parameters. To ensure that features do not
overfit some irrelevant biases present in the data, jitter –
horizontal flipping of all images, rotations between −8
and 8 degrees, and rescaling between 90 and 110% –
was used to artificially expand the size of the training
data. These additional distortions are applied during
training, before loading a new training point, and are
sampled from uniform distributions. Jitter was shown
to be crucial for low-level feature learning in the works
of [42] and [6].

For our baseline, we trained a single-scale network
and a three-scale network as raw site predictors, for
each location i, using the classification loss Lcat defined
in Eq 10, with the two-layer neural network defined in
Eq 9. Table 1 shows the clear advantage of the multi-scale
representation, which captures scene-level dependencies,
and can classify more pixels accurately. Without an
explicit segmentation model, the visual aspect of the pre-
dictions still suffers from inaccurate object delineation.

5.2 Parsing with superpixels

The results obtained with the strategy presented in
section 4.1 demonstrate the quality of our multiscale
features, by reaching a very high classification accuracy
on all three datasets. This simple strategy is also a real
fit for real time applications, taking only an additional
0.2 second to label a 320 × 240 image on Intel i7 CPU.
An example of result is given in Figure 7.

The 2−layer neural network used for this method
(Eq 9) has 768 input units, 1024 hidden units; and as
many output units as classes in each dataset. This neural
network is trained with no regularization.

5.3 Multilevel parsing

Although the simple strategy of the previous section
seems appealing, the results can be further improved
using the multilevel approach of Section 4.3.

The family of segmentations used to find the optimal
cover could be a simple segmentation tree constructed

11

on the raw image gradient. For the Stanford Background
dataset experiments, we used a more sophisticated tree
based on a semantic image gradient. We used the gPb
hierarchies of Arbelaez et al. , which are computed
using spectral clustering to produce semantically con-
sistent contours of objects. Their computation requires
one minute per image.

For the SIFT Flow and Barcelona datasets, we used a
cheaper technique, which does not rely on a tree: we ran
the superpixel method proposed by Felzenszwalb in [11]
at 10 different levels. The Felzenszwalb algorithm is not
strictly monotonic, so the structure obtained cannot be
cast into a tree: rather, it has a general graph form, in
which each pixel belongs to 10 different superpixels.
Our optimal cover algorithm can be readily applied
to arbitrary structures of this type. The 10 levels were
chosen such that they are linearly distributed and span
a large range.

Classically, segmentation methods find a partition of
the segments rather than a cover. Partitioning the seg-
ments consists in finding an optimal cut in a tree (so
that each terminal node in the pruned tree corresponds
to a segment). We experimented with graph-cuts to do
so [12], [2], but the results were less accurate than with
our optimal cover method (Stanford Background dataset
only).

The 2−layer neural network c from Eq 17 has 3× 3×
768 = 6912 input units (using a 3 × 3 grid of feature
vectors from F), 1024 hidden units; and as many output
units as classes in each dataset. This rather large neural
network is trained with L2 regularization (coefficient:
10−2), to minimize overfitting.

Results are better than the superpixel method, in
particular, better delineation is achieved (see Fig. 7).

5.4 Conditional random field

We demonstrate the state-of-the-art quality of our fea-
tures by employing a CRF on the superpixels given by
thresholding the gPb hierarchy, on the Stanford Back-
ground dataset. A similar test is performed in Lempitsky
et al. [30], where the authors also use a CRF on the same
superpixels (at the threshold 20 in the gPb hierarchy), but
employ different features. Histograms of densely sam-
pled SIFT words, colors, locations, and contour shape
descriptors. They report a ratio of correctly classified
pixels of 81.1% on the Stanford Background dataset. We
recall that this accuracy is the best one has achieved at
the present day on this dataset with a flat CRF.

In our CRF energy, we performed a grid search to set
the parameters of (13) (β = 20, α = 0.1 γ = 200), and
used a grey level gradient. The accuracy of the resulting
system is 81.4, as reported in Table 1. Our features are
thus outperforming the best publicly available combina-
tion of handcrafted features.

5.5 Some comments on the learned features

With recent advances in unsupervised (deep) learning,
learned features have become easier to analyze and
understand. In this work, the entire stack of features is
learned in a purely supervised manner, and yet we found
that the features obtained are rather meaningful. We
believe that the reason for this is the type of loss function
we use, which enforces a large invariance: the system

is forced to produce an invariant representation for all
the locations of a given object. This type of invariance
is very similar to what can be achieved using semi-
supervised techniques such as Dr-LIM [18], where the
loss enforces pairs of similar patches to yield a same
encoding. Figure 10 shows an example of the features
learned on the SIFT Flow dataset.

(a) (b) (c) (d)

Fig. 10. Typical first layer features, learned on the SIFT
Flow dataset. (a) to (c) show the 16 filters learned at each
scale, when no weight sharing is used (networks at each
scale are independent). (d) show the 16 filters obtained
when sharing weights across all 3 scales. All the filters
are 7 × 7. We observe typical oriented edges, and high-
frequency filters. Filters at higher layers are more difficult
to analyze.

5.6 Some comments on real-world generalization

Now that we have compared and discussed several
strategies for scene parsing based on our multiscale
features, we consider taking our system in the real-
world, to evaluate its generalization properties. The
work of [45], measuring dataset bias, raises the question
of the generalization of a recognition system learned on
specific, publicly available datasets.

We used our multiscale features combined with clas-
sification using superpixels as described in Section 4.1,
trained on the SiftFlow dataset (2,688 images, most of
them taken in non-urban environments, see Table 2
and Figure 9). We collected a 360 degree movie in our
workplace environment, including a street and a park.
introducing difficulties such as lighting conditions and
image distortions: see Figure 11.

The movie was built from four videos that were
stitched to form a 360 degree video stream of 1280×256
images, thus creating artifacts not seen during training.
We processed each frame independently, without using
any temporal consistency or smoothing.

Despite all these constraints, and the rather small
size of the training dataset, we observe rather convinc-
ing generalization of our models on these previously
unseen scenes. The two video sequences are available
at http://www.clement.farabet.net/. Two snapshots are
included in Figure 11. Our scene parsing system con-
stitutes at the best of our knowledge the first approach
achieving real time performance, one frame being pro-
cessed in less than a second on a 4-core Intel i7. Feature
extraction, which represent around 500ms on the i7 can
be reduced to 60ms using dedicated FPGA hardware [9],
[10].

6 DISCUSSION

The main lessons from the experiments presented in this
paper are as follows:

http://www.clement.farabet.net/

12

Fig. 9. Typical results achieved on the SIFT Flow dataset.

• Using a high-capacity feature-learning system fed
with raw pixels yields excellent results, when com-
pared with systems that use engineered features.
The accuracy is similar or better than competing
systems, even when the segmentation hypothesis
generation and the post-processing module are ab-
sent or very simple.

• Feeding the system with a wide contextual window
is critical to the quality of the results. The numbers
in table 1 show a dramatic improvement of the per-
formance of the multi-scale convolutional network
over the single scale version.

• When a wide context is taken into account to pro-
duce each pixel label, the role of the post-processing
is greatly reduced. In fact, a simple majority vote
of the categories within a superpixel yields state-of-
the-art accuracy. This seems to suggest that contex-
tual information can be taken into account by a feed-
forward trainable system with a wide contextual
window, perhaps as well as an inference mechanism
that propagates label constraints over a graphical
model, but with a considerably lower computational
cost.

• The use of highly sophisticated post-processing
schemes, which seem so crucial to the success of
other models, does not seem to improve the re-
sults significantly over simple schemes. This seems
to suggest that the performance is limited by the
quality of the labeling, or the quality of the seg-
mentation hypotheses, rather than by the quality of
the contextual consistency system or the inference
algorithm.

• Relying heavily on a highly-accurate feed-forward
pixel labeling system, while simplifying the post-
processing module to its bare minimum cuts down
the inference times considerably. The resulting sys-
tem is dramatically faster than those that rely heav-
ily on graphical model inference. Moreover, the

bulk of the computation takes place in the convolu-
tional network. This computation is algorithmically
simple, easily parallelizable. Implementations on
multi-core machines, general-purpose GPUs, Dig-
ital Signal Processors, or specialized architectures
implemented on FPGAs is straightforward. This is
demonstrated by the FPGA implementation [9], [10]
of the feature extraction scheme presented in this
paper that runs in 60ms for an image resolution of
320× 240.

7 CONCLUSION AND FUTURE WORK

This paper demonstrates that a feed-forward convo-
lutional network, trained end-to-end in a supervised
manner, and fed with raw pixels from large patches over
multiple scales, can produce state of the art performance
on standard scene parsing datasets. The model does not
rely on engineered features, and uses purely supervised
training from fully-labeled images to learn appropriate
low-level and mid-level features.

Perhaps the most surprising results is that even in
the absence of any post-processing, by simply labeling
each pixel with the highest-scoring category produced
by the convolutional net for that location, the system
yields near state-of-the-art pixel-wise accuracy, and bet-
ter per-class accuracy than all previously-published re-
sults. Feeding the features of the convolutional net to
various sophisticated schemes that generate segmenta-
tion hypotheses, and that find consistent segmentations
and labeling by taking local constraints into account
improves the results slightly, but not considerably.

While the results on datasets with few categories are
good, the accuracy of the best existing scene parsing sys-
tems, including ours, is still quite low when the number
of categories is large. The problem of scene parsing is far
from being solved. While the system presented here has
a number of advantages and shortcomings, the framing
of the scene parsing task itself is in need of refinement.

13

Fig. 11. Real-time scene parsing in natural conditions. Training on SiftFlow dataset. We display one label per
component in the final prediction.

First of all, the pixel-wise accuracy is a somewhat
inaccurate measure of the visual and practical quality of
the result. Spotting rare objects is often more important
than accurately labeling every boundary pixel of the
sky (which are often in greater number). The average
per-class accuracy is a step in the right direction, but
not the ultimate solution: one would prefer a system
that correctly spots every object or region, while giving
an approximate boundary to a system that produces
accurate boundaries for large regions (sky, road, grass),
but fail to spot small objects. A reflection is needed on
the best ways to measure the accuracy of scene labeling
systems.

Scene parsing datasets also need better labels. One
could imagine using scene parsing datasets with hi-
erarchical labels, so that a window within a building
would be labeled as “building” and “window”. Using
this kind of labeling in conjunction with graph structures
on sets of labels that contain is-part-of relationships
would likely produce more consistent interpretations of
the whole scene.

The framework presented in this paper trains the
convolutional net as a pixel labeling system in isolation
from the post-processing module that ensures the con-
sistency of the labeling and its proper registration with
the image regions. This requires that the convolutional

14

net be trained with images that are fully labeled at
the pixel level. One would hope that jointly fine-tuning
the convolutional net and the post-processor produces
better overall interpretations. Gradients can be back-
propagated through the post-processor to the convolu-
tional nets. This is reminiscent of the Graph Transformer
Network model, a kind of non-linear CRF in which an
un-normalized graphical model based post-processing
module was trained jointly with a convolutional network
for handwriting recognition [27]. Unfortunately, prelimi-
nary experiments with such joint training yielded lower
test-set accuracies due to overtraining.

A more importantly advantage of joint training would
allow the use of weakly-labeled images in which only
a list of objects present in the image would be given,
perhaps tagged with approximate positions. This would
be similar in spirit to sentence-level discriminative train-
ing methods used in speech recognition and handwriting
recognition [27].

Another possible direction for improvement includes
the use of objective functions that directly operates
of the edge costs of neighborhood graphs in such as
way that graph-cut segmentation and similar methods
produce the best answer. One such objective function
is is Turaga’s Maximin Learning [46], which pushes up
the lowest edge cost along the shortest path between
two points in different segments, and pushes down the
highest edge cost along a path between two points in
the same segment.

Our system so far has been trained using purely
supervised learning applied to a fairly classical convo-
lutional network architecture. However, a number of
recent works have shown the advantage of architectural
elements such as rectifying non-linearities and local
contrast normalization [21]. More importantly, several
works have shown the advantage of using unsupervised
pre-training to prime the convolutional net into a good
starting point before supervised refinement [37], [22],
[23], [29], [24]. These methods improve the performance
in the low training set size regime, and would probably
improve the performance of the present system.

Finally, code and data are available online at
http://www.clement.farabet.net/.

ACKNOWLEDGMENT

We would like to thank Marco Scoffier for fruitful dis-
cussions and the 360 degree video collection. We are also
grateful to Victor Lempitsky who kindly provided us
with his results on the Stanford Database for compari-
son.

This work was funded in part by DARPA contract ”In-
tegrated deep learning for large scale multi-modal data
representation”, ONR MURI ”Provably-stable vision-
based control of high-speed flight”, ONR grant ”Learn-
ing Hierarchical Models for Information Integration”.

REFERENCES

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour Detec-
tion and Hierarchical Image Segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 33(5):898–916, 2011. 6, 9

[2] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary & region segmentation of objects in n-d images. In
Proceedings of International Conference of Computer Vision (ICCV),
volume 1, pages 105–112, 2001. 11

[3] Y. Boykov and V. Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision.
IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137, 2004. 5

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. IEEE Trans. Pattern Anal. Mach.
Intell., 23(11):1222–1239, 2001. 5

[5] J. Carreira and C. Sminchisescu. CPMC: Automatic Object
Segmentation Using Constrained Parametric Min-Cuts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2012. 2

[6] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. A committee of
neural networks for traffic sign classification. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages 1918–
1921. IEEE, 2011. 10

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing
with multiscale feature learning, purity trees, and optimal covers.
In Proceedings of the International Conference on Machine Learning
(ICML), June 2012. 2, 6

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing
with multiscale feature learning, purity trees, and optimal covers.
CoRR, abs/1202.2160, February 2012. 3

[9] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Cu-
lurciello. Hardware accelerated convolutional neural networks for
synthetic vision systems. In International Symposium on Circuits and
Systems (ISCAS’10), Paris, May 2010. IEEE. 11, 12

[10] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun. Neuflow: A runtime reconfigurable dataflow processor
for vision. In Proceedings of the Fifth IEEE Workshop on Embedded
Computer Vision. IEEE, 2011. 11, 12

[11] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59:167–181,
2004. 5, 7, 8, 10, 11

[12] L. R. Ford and D. R. Fulkerson. A simple algorithm for finding
maximal network flows and an application to the hitchcock
problem. Technical report, RAND Corp., Santa Monica, 1955. 11

[13] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and
object localization with superpixel neighborhoods. In ICCV, pages
670–677. IEEE, 2009. 5

[14] C. Garcia and M. Delakis. Convolutional face finder: A neural
architecture for fast and robust face detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2004. 3

[15] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into
geometric and semantically consistent regions. IEEE International
Conference on Computer Vision, pages 1–8, Sept. 2009. 2, 8

[16] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-
class segmentation with relative location prior. Int. J. Comput.
Vision, 80(3):300–316, Dec. 2008. 5

[17] D. Grangier, L. Bottou, and R. Collobert. Deep Convolutional Net-
works for Scene Parsing. In ICML 2009 Deep Learning Workshop,
2009. 3

[18] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction
by learning an invariant mapping. In Proc. Computer Vision and
Pattern Recognition Conference (CVPR’06). IEEE Press, 2006. 11

[19] X. He and R. Zemel. Learning hybrid models for image anno-
tation with partially labeled data. Advances in Neural Information
Processing Systems, 2008. 2

[20] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. Briggman,
M. Helmstaedter, W. Denk, and S. H. Seung. Supervised learning
of image restoration with convolutional networks. In ICCV, 2007.
3

[21] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is
the best multi-stage architecture for object recognition? In Proc.
International Conference on Computer Vision (ICCV’09). IEEE, 2009.
3, 14

[22] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning
invariant features through topographic filter maps. In Proc.
International Conference on Computer Vision and Pattern Recognition.
IEEE, 2009. 14

[23] K. Kavukcuoglu, M. Ranzato, and Y. LeCun. Fast inference in
sparse coding algorithms with applications to object recognition.
Technical report, Courant Institute of Mathematical Sciences, New
York University, 2008. Tech Report CBLL-TR-2008-12-01. 14

[24] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun. Learning convolutional feature hierachies for
visual recognition. In Advances in Neural Information Processing
Systems (NIPS 2010), volume 23, 2010. 14

[25] M. Kumar and D. Koller. Efficiently selecting regions for scene
understanding. In Computer Vision and Pattern Recognition (CVPR),
pages 3217–3224. IEEE, 2010. 2, 8

[26] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Handwritten digit recognition with
a back-propagation network. In NIPS’89, 1990. 4

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, November 1998. 1, 2, 4, 14

[28] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop.
In G. Orr and M. K., editors, Neural Networks: Tricks of the trade.
Springer, 1998. 4

[29] H. Lee, R. Grosse, R. Ranganath, and Y. Ng, Andrew. Convolu-

http://www.clement.farabet.net/

15

tional deep belief networks for scalable unsupervised learning of
hierarchical representations. In Proc. of International Conference on
Machine Learning (ICML’09), 2009. 14

[30] V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model
for semantic segmentation. In Advances in Neural Information
Processing Systems, 2011. 2, 8, 11

[31] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing:
Label transfer via dense scene alignment. Artificial Intelligence,
2009. 8

[32] D. Munoz, J. Bagnell, and M. Hebert. Stacked hierarchical
labeling. ECCV 2010, Jan 2010. 2, 8

[33] L. Najman and M. Schmitt. Geodesic saliency of watershed
contours and hierarchical segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 18(12):1163–1173, December 1996. 6

[34] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. Bar-
bano. Toward automatic phenotyping of developing embryos
from videos. IEEE Trans. on Image Processing, 2005. Special issue
on Molecular & Cellular Bioimaging. 3

[35] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection
and pose estimation with energy-based models. Journal of Machine
Learning Research, 8:1197–1215, 2007. 3

[36] C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by
integrating multiple image segmentations. In ECCV 2008, 10th
European Conference on Computer Vision, Marseille, France, pages
481–494, 2008. 2

[37] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised
learning of invariant feature hierarchies with applications to ob-
ject recognition. In Proc. of Computer Vision and Pattern Recognition.
IEEE, 2007. 14

[38] B. Russell, A. Torralba, C. Liu, R. Fergus, and W. Freeman. Object
recognition by scene alignment. In Neural Advances in Neural
Information, 2007. 8

[39] C. Russell, P. H. S. Torr, and P. Kohli. Associative hierarchical
CRFs for object class image segmentation. In Proc. ICCV, 2009. 2

[40] H. Schulz and S. Behnke. Learning object-class segmentation with
convolutional neural networks. In 11th European Symposium on
Artificial Neural Networks (ESANN), 2012. 3

[41] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost:
Joint appearance, shape and context modeling for multi-class
object recognition and segmentation. In A. Leonardis, H. Bischof,
and A. Pinz, editors, ECCV (1), volume 3951 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2006. 5

[42] P. Simard, D. Steinkraus, and J. Platt. Best practices for convo-
lutional neural networks applied to visual document analysis.
In Proceedings of the Seventh International Conference on Document
Analysis and Recognition, volume 2, pages 958–962, 2003. 10

[43] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing
Natural Scenes and Natural Language with Recursive Neural
Networks. In Proceedings of the 26th International Conference on
Machine Learning (ICML), 2011. 2, 8

[44] J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric
image parsing with superpixels. ECCV, pages 352–365, 2010. 2,
8, 10

[45] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In
CVPR, pages 1521–1528. IEEE, 2011. 11

[46] S. Turaga, K. Briggman, M. Helmstaedter, W. Denk, and H. Seung.
Maximin affinity learning of image segmentation. NIPS, Jan 2009.
3, 14

[47] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach for the
localisation of objects in images. IEE Proc on Vision, Image, and
Signal Processing, 141(4):245–250, August 1994. 3

Clément Farabet received a Master’s Degree
in Electrical Engineering with honors from In-
stitut National des Sciences Appliques (INSA)
de Lyon, France in 2008. His Master’s thesis
work was developed at the Courant Institute of
Mathematical Sciences of New York University
with Prof Yann LeCun. He then joined Prof Yann
LeCun’s laboratory in 2008, as a research scien-
tist. In 2009, he started collaborating with Yale
University’s e-Lab, led by Prof Eugenio Culur-
ciello. In 2010, he started the PhD program at
Université Paris-Est, with Prof Laurent Najman,

in parallel with his research work at Yale and NYU. His research interests
include intelligent hardware, embedded super-computers, computer vi-
sion, machine learning, embedded robotics, and more broadly artificial
intelligence. His current work aims at developing a massively-parallel yet
low-power processor for general-purpose vision. Algorithmically, most of
this work is based on Prof Yann LeCun’s Convolutional Networks, while
the hardware has its roots in dataflow computers and architectures as
they first appeared in the 1960s.

Camille Couprie earned a PhD in computer sci-
ence at the Université Paris Est, France in 2011
after an engineer degree at ESIEE Paris with
the highest honors in 2008. Her PhD, advised by
Professors Laurent Najman and Hugues Talbot,
was supported by the French Direction Générale
de l’Armement MRIS program and the Centre
National de la Recherche Scientifique. Since
Autumn 2011, she is a postdoctoral researcher
at the Courant Institute of Mathematical Sci-
ences, in the Computer Science department with
Professor Yann Lecun. Her research focuses

on image segmentation, optimization techniques, graph theory, PDE,
mathematical morphology and machine learning. Other interests include
stereo vision, image registration, medical imaging and topology.

Laurent Najman received the Habilitation à
Diriger les Recherches in 2006 from University
the University of Marne-la-Vallée, a Ph.D. of ap-
plied mathematics from Paris-Dauphine Univer-
sity in 1994 with the highest honor (Félicitations
du Jury) and an “Ingénieur” degree from the
Ecole des Mines de Paris in 1991. After earning
his engineering degree, he worked in the cen-
tral research laboratories of Thomson-CSF for
three years, working on some problems of in-
frared image segmentation using mathematical
morphology. He then joined a start-up company

named Animation Science in 1995, as director of research and devel-
opment. The technology of particle systems for computer graphics and
scientific visualisation, developed by the company under his technical
leadership received several awards, including the “European Information
Technology Prize 1997” awarded by the European Commission (Esprit
programme) and by the European Council for Applied Science and
Engineering and the “Hottest Products of the Year 1996” awarded by
the Computer Graphics World journal. In 1998, he joined OC Print
Logic Technologies, as senior scientist. He worked there on various
problem of image analysis dedicated to scanning and printing. In 2002,
he joined the Informatics Department of ESIEE, Paris, where he is
professor and a member of the Gaspard-Monge computer science
research laboratory (LIGM), Université Paris-Est Marne-la-Vallée. His
current research interest is discrete mathematical morphology.

Yann Lecun is Silver Professor of Computer
Science and Neural Science at the Courant In-
stitute of Mathematical Sciences and the Center
for Neural Science of New York University. He
received the Electrical Engineer Diploma from
Ecole Supérieure d’Ingénieurs en Electrotech-
nique et Electronique (ESIEE), Paris in 1983,
and a PhD in Computer Science from Université
Pierre et Marie Curie (Paris) in 1987. After a
postdoc with Geoffrey Hinton at the University
of Toronto, he joined AT&T Bell Laboratories in
Holmdel, NJ, in 1988, and became head of the

Image Processing Research Department at AT&T Labs-Research in
1996. He joined NYU as a professor in 2003, after a brief period as
Fellow at the NEC Research Institute in Princeton. His current inter-
ests include machine learning, computer perception and vision, mobile
robotics, and computational neuroscience. He has published over 140
technical papers and book chapters on these topics as well as on neural
networks, handwriting recognition, image processing and compression,
and VLSI design. His handwriting recognition technology is used by
several banks around the world to read checks. His image compression
technology, called DjVu, is used by hundreds of web sites and publishers
and millions of users to access scanned documents on the Web, and his
image recognition methods are used in deployed systems by companies
such as Google, Microsoft, NEC, France Telecom and several startup
companies for document recognition, human-computer interaction, im-
age indexing, and video analytics. He has been on the editorial board of
IJCV, IEEE PAMI, IEEE Trans on Neural Networks, was program chair
of CVPR’06, and is chair of the annual Learning Workshop. He is on the
science advisory board of Institute for Pure and Applied Mathematics,
and is the co-founder of MuseAmi, a music technology company.

