
Efficient Off-Road Localization Using Visually Corrected Odometry

Matthew Grimes and Yann LeCun

Abstract— We describe an efficient, low-cost, low-overhead
system for robot localization in complex visual environments.
Our system augments wheel odometry with visual orientation
tracking to yield localization accuracy comparable with “pure”
visual odometry at a fraction of the cost. Such a system is
well-suited to consumer-level robots, small form-factor robots,
extraterrestrial rovers, and other platforms with limited com-
putational resources. Our system also benefits high-end multi-
processor robots by leaving ample processor time on all camera-
computer pairs to perform other critical visual tasks, such as
obstacle detection. Experimental results are shown for outdoor,
off-road loops on the order of 200 meters. Comparisons are
made with corresponding results from a state-of-the-art pure
visual odometer.

I. INTRODUCTION

The ability for a robot to localize itself can be critical for
successful autonomous operation. While a globally consistent
solution to the localization problem must necessarily also
perform mapping [1], many applications do not require or
benefit from a globally consistent map. Locally consistent
approaches such as fixed-time-window SLAM [2] and visual
odometry [3], [4] have shown great success in applications
such as goal-directed navigation and localization in dynamic
environments.

Wheel odometry has been a popular mainstay for robotic
localization due to its low overhead and high sampling
frequency. Its accuracy however is limited by wheel slip,
a source of error that can be challenging to detect and
correct without other sensors. Wheel slip can be particularly
frequent and destructive in runs over outdoor terrain with
loose or uneven ground. Full visual odometry (VO) uses
feature tracking to entirely replace ground odometry, but
current systems [4] require 100% of the processing time on a
high-end CPU. For single-CPU autonomous robots, this cost
can be prohibitive. The cost of VO can be a burden even for
multi-CPU platforms, as it is often desirable for all camera-
computer pairs to be able to perform additional tasks, such
as short-range obstacle detection, at high framerates in their
respective fields of view.

We have implemented a visual localization system that
runs at a fraction of the cost of state-of-the-art VO
systems while maintaining comparable accuracy. On our
multi-processor, multi-camera system, this allows a single
processor-camera pair to handle VO in parallel with other

This work was supported by the DARPA Learning Applied to Ground
Robotics (LAGR) project

M. Grimes is with the Courant Institute of Mathematical Sciences, New
York University, 719 Broadway 12th floor, New York, NY 10003, USA
mkg@cs.nyu.edu

Y. LeCun is with the Faculty of Courant Institute of Mathematical
Sciences, New York University, 719 Broadway 12th floor, New York, NY
10003, USA yann@cs.nyu.edu

visual tasks, enabling tight coupling between localization,
obstacle detection, and control. Our system can be of even
more use to robots with limited computational power, such as
small robots, consumer-oriented platforms, or extraterrestrial
rovers.

We achieve this performance gain by specializing the
visual odometer to the task of tracking only one degree
of freedom: the robot’s bearing. This bearing estimate is
combined with a wheel odometer’s translation estimate to
yield 3-DOF pose estimates with much-improved accuracy
over wheel odometry, and comparable accuracy to 6-DOF
visual odometers on low-curvature terrain. The efficiency
of our system comes from the fact that tracking only the
bearing allows us to operate at much lower resolutions
than would be acceptable on a 6-DOF odometer. This is
because the uncertainty of an object’s distance grows rapidly
with distance at low resolutions, while the uncertainty of
its robot-relative bearing is constant. For example, at our
resolution of 160x120 pixels, an uncertainty of ±0.25 pixels
translates to ±0.1 degrees of yaw, but ±1.25 meters of
distance for an object 6 meters away. Additional speedups are
gained by using spherical image projection for more reliable
feature tracking, and limiting the feature tracking to windows
bounded by wheel odometer output. We show that this hybrid
odometry approach achieves much of the benefit of a full
visual odometer at a greatly reduced computational cost.

II. RELATED WORK

There has been much work in both wheel odometry and
visual odometry (VO), while only limited attention has been
paid to the intersection of the two approaches. Schaefer et.
al. [5] use wheel odometry to check the output of a full
VO system for errors arising from moving objects. Rather
than run full visual and wheel odometry systems in parallel,
we have focused on how to best exploit wheel odometry to
lighten the computational burden of VO. A number of au-
thors have used visual matching to correct IMU or GPS data
on aerial platforms [6] [7] [8]. Our system is implemented
on a ground rover, where many of the assumptions afforded
in the air, such as nearly coplanar features and slow visual
flow, do not apply.

Most other work in relative pose tracking has focused
either on using non-visual sensors to detect wheel slip, or on
employing full visual odometry as a complete replacement
to wheel odometry.

A. Wheel odometry correction

Wheel slip can occur in many flavors, from sudden spurts
of wheel speed to gently increasing drift. The latter in

particular is difficult to detect by simple cross-checking
against motor current or inertial sensor output, requiring
more nuanced approaches. Ojeda et. al. [9] correct odometry
using parameterized functions of motor current and soil
cohesion. However, Maimone et. al. [10] report that such
an approach fares poorly unless the soil consistency is
nearly homogeneous. Ward and Iagnemma train an SVM on
hand-labeled odometric and inertial sensor outputs to detect
immobilization [11]. In another paper [12], the same authors
employ a model-based approach, inferring robot velocity by
fusing the output of a physical model with IMU, GPS, and
wheel odometry output. A simpler approach to detecting slip
would be to complement odometry with the absolute po-
sition measurements provided by GPS. Unfortunately, GPS
input can be sporadic and inaccurate in wooded or urban
environments [13] [14], and even under optimal conditions
refreshes only once per second [15]. On our ground rover
platform, we have found that one second is plenty of time
for a robot to hallucinate a sharp turn due to wheel slip
and react by sharply turning in the opposite direction. When
driving alongside entangling vegetation or on narrow forest
paths, such sudden “corrective” turns can prove catastrophic
to a run. Furthermore, both GPS and odometry exhibit
highly non-Gaussian error profiles, as neither GPS “jumps”
nor wheel slip errors are well modeled as a random walk
around a mean value. Sukkarieh et. al. [13] therefore use
a chi-squared gating function to detect and discard blatantly
spurious sensor outputs, and feed only vetted sensor readings
to a Gaussian model, in their case an EKF sensor fusion algo-
rithm. However, this does not address the problem of GPS’s
low update frequency, nor a gating function’s insensitivity to
gradual odometry drift at low speeds. Rather than attempting
to selectively detect and correct bad rotation estimates by the
wheel odometer, we have opted to replace them entirely with
the more reliable rotation estimates of our visual rotation
tracker.

B. Full visual odometry

Full visual odometry tracks visual features to make a
differential estimate of the robot’s full 6-DOF pose. Nistér
et. al. [3] tracked Harris corners [16] in real time, dis-
carding spurious feature associations between frames using
RANSAC [17]. Konolige et. al. improved upon this in their
own real-time system by incorporating bundle adjustment
to reduce drift [4]. However, their system occupies all of
the processor time on a high-end CPU, requiring additional
computers to handle other aspects of autonomous operation
such as mapping and planning. The NASA Mars Exploration
Vehicle is hit particularly hard by the computational demands
of full VO, which can take up to 3 minutes per frame on
its 20 MHz processor, leading to an average movement of
10m/hour [10]. By contrast, our system is implemented on
the same robotic platform used in [4] where one of its two
camera-computer pairs is dedicated to the task of real-time
full VO. However, this leaves that camera-computer pair
unable to perform other potentially critical tasks on its field
of view, such as obstacle detection. For this reason, we have

(a) Camera image (b) Spherical image

Fig. 1. A rectified camera image and its spherical transform. The
asymmetry of the spherical image is due to the fact that the camera
is pointed off to the left and down, with some axial roll. The robot is
pointed straight at the area highlighted by four yellow dots, placed
at pitch and yaw values [0.03, 0.1], [0.03,−0.1], [−0.03,−0.1], and
[−0.03, 0.1], in radians. After the transformation, these points form
an axis-aligned rectangle around the frontal direction. In practice,
we transform only the portion of the camera image roughly located
around the horizon, highlighted by the green rectangle above.

chosen our more lightweight approach.

III. ALGORITHM

In the interest of keeping running costs down, our system
tracks only six patches per frame, tracking wide image
patches at low resolution. The system samples patches from
a region around the horizon, interpreting their horizontal mo-
tion from frame to frame as a rotation of the robot. There are
two challenges to this approach: one is that a small number of
features may be less robust to mismatches. The other is that a
robot driving in a straight line will see features drift towards
the sides of the image as it drives by (“parallax drift”). Under
a naı̈ve implementation, such horizontal motion in the image
would be incorrectly interpreted as a rotation. In this section
we give a walkthrough of our algorithm, paying particular
attention to the solutions to the above problems. The overall
algorithm is as follows:

1) Re-map the image to remove feature size distortions
due to planar projection.

2) Sample features from a small region of the previous
frame selected using wheel odometry.

3) Search for the sampled features in the current frame,
again limiting the search area using wheel odometry.

4) Cross-validate the features’ motions between frames
and discard any outliers.

5) Localize the robot in the current frame by replacing
the wheel odometry’s rotation estimate with that of the
visual odometer, and rotating the translation estimate
by the difference in rotations.

A. Re-map image to a spherical projection

Because we track a small number of image patches per
frame, care must be taken to minimize the number of
mismatched patches. We use wide patches subtending eight
degrees of yaw, as larger patches tend to be more distinctive.
However, such large features stretch when moved from the
center of the image to the edges, where each pixel subtends
a smaller solid angle. This distortion can cause mismatches
when searching for features that have moved from the center
of the image to near an edge, or vice-versa. To remove this

 '

d

r

r
si

n

r cos d

Fig. 2. Parallax from pure forward motion. We wish to limit
our attention to objects which will not shift under parallax from
frame to frame. In a spherical image where each pixel subtends
θp radians of yaw, this requires that the bearing θ of the object not
change more than θp/2. Given upper limits on θ and the frame-to-
frame translation d, we may solve for a minimum distance r. We
avoid parallax by detecting distance using stereo data calculated
earlier for obstacle detection, and ignoring all features closer than
r.

distortion, we remap the camera image using a “spherical
projection”, where each pixel row and column covers a fixed
amount of vehicle-relative pitch and yaw [φp, θp], respec-
tively (figure 1). We define the mapping from camera image
coordinates [i, j] to spherical image coordinates [k, l] as:

k(i, j) = (φ(i, j)− φo)/a (1)
l(i, j) = (θ(i, j)− θo)/a (2)

Here, a is a chosen ratio of radians per pixel, and [φo, θo]
is the pitch and yaw of the view ray corresponding to the
upper-left pixel in the spherical image. We choose a as being
the radians-per-pixel of the center pixel in the planar image.
We perform this mapping using a precalculated coordinate
look-up table.

B. Sampling features

Even when the robot is moving straight forward, any
feature except for those directly in front of the robot will
drift towards the side of the image as the robot drives by. If
we are to interpret the horizontal motion of features as robot
rotation, we must limit our features to those for which this
frame-to-frame “parallax drift” is less than half a pixel in
the spherical image, and therefore undetectable. As shown
in figure 2, this constraint defines a minimum value for
a feature’s distance r as a function of its bearing θ, the
maximum possible travel of the camera between frames d,
and the yaw subtended by a pixel in the spherical image θp:

rmin =
d tan(θp/2 + θ)

cos θ tan(θp/2 + θ)− sin θ
(3)

With a sufficiently reliable stereo vision system with which
to estimate r, one could threshold all features in the image
by their distance. However, the threshold rmin increases
with bearing θ, and stereo depth is unreliable for faraway
features at low image resolutions. We therefore opt to limit
our sampling to a small range of yaw −θmax < θ < θmax
centered on the frontal direction θ = 0. We then substitute
θmax for θ in equation 3 to derive a corresponding minimum
distance rmin. Any feature closer than rmin is deemed unfit
for use. When an insufficient number of viable landmarks
are found in a particular frame, the pose for that frame is
estimated using wheel odometry. In practice, this happens

relatively rarely outdoors. Even in dense forests such as the
one in figure 4(c), the many nearby obstacles (trees) caused
our hybrid VO system to defer to wheel odometry on only
7.9% of the frames. We found that this was sufficiently
low to maintain good performance on uneven and slippery
forest ground. Two exceptions where distal features may be
intermittent are areas that are dense with eye-level vegetation,
or extremely hilly areas where the terrain regularly rises to
eye level within rmin meters. The former situation can be
mitigated by slowing down to reduce d, and therefore reduce
rmin, when VO finds itself frequently delegating to wheel
odometry. The latter case of severely hilly terrain presents
mapping difficulties for any 3-DOF model, though our visual
tracker still presents an improvement over wheel odometry
for control purposes.

On our system, we estimate distance using the dense
stereo image already calculated by another component for
the purposes of obstacle detection. If no such calculation is
already being done, the approach of [4] may be used, where
stereo disparity is calculated for each patch rather than for all
pixels. Our use of stereo information is distinguished by its
low requirement for depth precision. We need only establish
whether a patch is close enough to drift due to parallax
between neighboring frames. The lower the resolution, the
looser this requirement becomes, as features need to drift far-
ther to cause noticeable pixel shift. This low dependence on
depth precision enables our method to operate efficiently on
low resolution video. By contrast, pure VO methods that use
the depth estimate to measure translation are more sensitive
to the high depth uncertainty at low image resolutions.

The choice of θmax can be made based on the robot’s
expected speed, environment, and camera geometry. On our
platform, the cameras point off to the sides, thereby making
the frontal direction close to one side of the spherical image
(see figure 1(b)). We therefore chose θmax to be the absolute
value of the yaw of that side, namely ±0.09 or ±0.14 radians
depending on the eye. This left 15% to 23% of the horizon
image available for sampling. Using these θmax values, along
with a d of 0.13 meters (1.3 m/s / 10 Hz), equation 3 yields
minimum distances rmin of 2.42m and 3.69m.

The region defined by −θmax < θ < θmax is further
shrunk on all sides by half the patch dimensions before
searching for Harris corners in one of its channels. These
corners are used to find suitable points from which to sample
RGB patches. The shrinkage is done to ensure that patches
centered on these corners are completely contained within
−θmax < θ < θmax. The horizon images labeled “previous
frame” in figure 3 show this region in blue. As each image
patch is selected, the Harris corners under that patch are set
to zero as a form of non-max suppression. We sample 6
patches measuring 13 x 3 pixels, or 7.6 by 1.75 degrees of
solid angle, or 11% by 3% of the field of view. Note that
while we sample in a narrow region, the search region is not
so constrained. Therefore, θmax does not present a limit on
our robot’s rotation rate.

(a) Open field (b) Office parking lot

Fig. 3. The robot’s view, while running two of the courses in
figure 4. “Previous frame” shows the spherically projected horizon
image. Harris corners are detected in a region shown in blue,
defined either as the frontal direction (figure 3(a)), or as what
will become the frontal direction in the current frame, according to
wheel odometry (figure 3(b)). Image patches are sampled around
the strongest corners. “Current frame” shows their matches in the
current frame. “Search windows” shows their search areas, defined
to span the patch’s position in the previous frame and its position
in the current frame as predicted by wheel odometry. Figure 3(b)
has wider search windows because the robot is in the middle of a
sharp turn. “Patches” shows the isolated patches. The patch framed
by yellow dots is a discarded outlier patch. Comparing the yellow
rectangle in the previous and current frames, we can see that it has
shifted by one pixel relative to the other patches.

C. Searching for patches

In outdoor environments, it is a common occurrence for
the robot to rotate less than reported by wheel odometry
(“wheel slip”). The opposite case of the robot rotating
significantly more than the wheels (“wheel skid”) is far less
common under vehicle speeds typically operated under by
autonomous vehicles [12]. We therefore trust our odometry
to set an upper limit on the expected patch motion from
frame to frame. Vehicles that do operate at skid-inducing
speeds may choose to employ low-resolution whole-image
matching, used by Klein et al [18] for efficient high-speed
tracking, to provide another prior for the patch locations.
When searching for image patches, we limit our search
window to a region that encompasses the patch’s position in
the previous frame and the patch’s position in the current
frame, as predicted by wheel odometry. This window is
inflated on all sides by half the patch dimensions for an added
measure of safety. We apply a normalized cross-correlation
of the image patch with this search window, and choose the
maximum as the best-matching location.

On our platform, the camera used for VO points off to
one side, putting the frontal direction near the side of the
image. Features sampled from this area are easily scrolled
off that frontal side of the screen when the robot turns away
from it. We therefore choose the sampling location using
wheel odometry. If it indicates a turn away from the frontal
side, we sample not from the previous image’s frontal region,
but from the area that will become the frontal region in the
current frame, according to odometry. In order for both these

regions to be scrolled off the screen, almost the entire image
must be scrolled off-screen in either direction. This is an
impossibility on our system, given its maximum turn rate of
π radians per second.

D. Cross-validate matches

The change in yaw of an image patch from the previous
frame to the current frame is that patch’s estimate of the
robot’s rotation. To detect outliers, we cross-validate by hav-
ing each patch “vote” for every other patch whose estimate
differs by less than θp. Patches whose vote tally is more than
half the number of patches are deemed reliable, while others
are rejected as outliers. The rotation estimate shared by all
inliers is taken as the robot’s rotation between the previous
and current frames. When using a small number of patches,
a pair of frames may occasionally present no patches with a
sufficient number of votes. On such frames we let the wheel
odometer supply the change in pose.

E. Localizing the robot

The robot’s current pose is estimated as:

p′ = p+R θv
2
R−θw∆pw (4)

Where p′ and p are the current and previous pose estimates,
∆pw is the change in pose as reported by wheel odometry, θv
and θw are the change in yaw as reported by visual odometry
and wheel odometry, and Rθ is a rotation matrix representing
a yaw rotation by θ. The concatenation R θv

2
R−θw expresses

the fact that we undo the odometry-reported rotation θw
and replace it with θv

2 . We use the midpoint method to
numerically integrate the pose forward, hence the use of θv

2
rather than θv .

In blending visual and non-visual odometry, we chose
not to employ probabilistic model-based sensor fusion tech-
niques, due to the highly non-Gaussian nature of wheel slip
in outdoor terrain (see section II-A). However it is simple
enough to model the uncertainty of our bearing-only visual
odometer, allowing for model-based sensor fusion with other
sensors, or with wheel odometry in settings in which it
is better behaved. In section III-C, we described how we
search for image patches by calculating its normalized cross-
correlation within a search area, choosing the peak yaw θo
as its matching location. We may locally fit a normal distri-
bution N(θo, σ) to this peak, finding standard deviation σ by
matching the second derivative of N(θo, σ) to the numerical
second derivative of the cross correlation profile around the
peak. The procedure may be repeated for all patches within
our consensus set, and their individual uncertainties σi may
be merged in the standard manner to yield the standard
deviation of the bearing estimate: σθ =

(∑
i σ
−1
θi

)−1
.

IV. IMPLEMENTATION

The system described in this paper has been deployed on
the DARPA/NREC LAGR platform, an autonomous outdoor
rover. The robot runs on two powered wheels and two
passive casters, and takes input from wheel encoders, an
IMU, and a GPS unit. In addition it takes visual input from

(a) Field Loop: A closed loop around two tree clusters.

(b) Building Lap: A partial loop around a building.

(c) Forest Path: Down a narrow forest path and back.

Fig. 4. Vehicle trajectories, as measured using wheel odometry
+ IMU, wheel odometry + IMU + GPS, full VO [4], and vision-
corrected wheel odometry. Non-GPS trajectories are aligned to the
initial orientation estimate given by GPS, which can be noisy. In
figure 4(a), the robot’s initial pose and final pose are identical. A
trajectory’s correctness may therefore be evaluated by the size of
the opening in the loop. In figure 4(b) the robot follows the sidewalk
between the robot’s first turn and sixth turn. The sidewalk’s shape
serves as ground truth during this segment. In figure 4(c), the robot
traverses a narrow forest path, then backtracks down the same path.
GPS is inaccurate and disruptive in wooded areas such as these.

two stereo camera pairs, pointing slightly to the left and to
the right, with fields of view that overlap slightly around the
frontal direction. The robot provides three user-accessible
computers, one of which runs the VO system described in
this paper. We have implemented all software components in
Lush, an interpreted language with compilable functions. The
visual odometer is entirely compiled, and runs on one of the
camera computers. We captured the camera images at a low
resolution of 160 x 120 pixels, and used six image patches of
13 x 3 pixels. The Intel Performance Primitives (IPP) library
was used for the spherical image transform, Harris corner
detection, and normalized cross-correlation. The hybrid VO
system runs within the same thread as the short-range stereo-
based obstacle detector [19], running at 6 Hz. The processor

Fig. 5. Drift from GPS position over time. The dots show the
distances of estimated trajectories from the GPS position for 10
randomly chosen runs. The lines show the corresponding averages
over all runs. The average distance traveled (as measured by GPS)
was 30.3 meters.

time is also shared by a long-range (5 to 150 meters) obstacle
detector [20] running in a separate thread at 1 Hz. The “IMU
+ wheel” and “GPS + IMU + wheel” trajectories shown in
figure 4 were calculated using tuned EKF pose estimators
provided with the platform.

V. RESULTS

The hybrid VO system has been tested on various types of
outdoor terrain including the area around an office building,
an open field, and a narrow path through a forest. For the
results presented here, we recorded logs in these settings,
and ran both our hybrid VO and the full 6-DOF VO of
[4] on them, as a benchmark for accuracy and processor
time. Figure 4 shows the pose trajectories of three runs. Pre-
dictably, wheel odometry fused with IMU consistently fares
the worst. The EKF fusion of wheel odometry, IMU, and
GPS does better, except in the forest where the GPS signal
can be both sporadic and inaccurate. Even with clear GPS
reception, the GPS-aided trajectory features discontinuities
due to satellites coming in and out of reception. Full VO
and hybrid VO perform comparably in all three runs, except
for figure 4(b), where a forward wheel slip was deliberately
induced by running the robot up against a curb that was too
high to surmount. All but the full visual odometer are fooled
into believing that the robot made it over the curb. The plot
in 4(c) shows the robot going down a narrow path through
a forest. Accurate, high-frequency estimates of the robot
bearing are particularly important in such settings, where
false rotations due to wheel slip are frequent, and can cause
a robot to counter-steer into entangling obstacles on each
side. The hybrid VO retraces the path accurately after a quick
180-degree turn.

Figure 5 shows the drift from GPS (taken here to represent
ground truth) over time for wheel odometry, hybrid VO,
and pure VO. The data is from 10 randomly chosen runs,
manually vetted for inaccurate GPS such as that of figure
4(c).

The CPU cost of each of these runs are reported in table I.
The runtimes shown are those of a Pentium 4M laptop at

TABLE I
CPU TIME PER FRAME ON A 2 GHZ PENTIUM 4M FOR FULL VO [4]

AND HYBRID VO ON THE THREE COURSES SHOWN IN FIGURE 4.

Log file Full VO Hybrid VO + range Hybrid VO
Field Loop 266 ms 11.5 ms 8.0 ms

Building Lap 238 ms 11.0 ms 8.2 ms
Forest Path 153 ms 14.0 ms 9.3 ms

2 GHz, running off of image and sensor data logged by the
robot. The robot’s CPUs are approximately 2.5 times faster.
The per-frame cost and the fraction of frames successfully
processed are shown. While our system does not track
translations, it does use range information to rule out features
that are too close to the robot. As discussed in section III-
B, we get this information “for free” by appropriating the
stereo image already calculated by our obstacle classification
system. If no such stereo image data is available, we can
also adopt the approach of [4], where a patch is searched
for in the other stereo camera to estimate distance on a per-
patch rather than per-pixel basis. In table I, the runtimes for
running just the hybrid VO, and for running the hybrid VO
with per-patch stereo matching, are shown separately. The
full VO runtime is best compared to the latter.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented an efficient hybrid wheel/visual odome-
ter capable of localizing an autonomous robot in unstructured
outdoor terrain at 5 to 10 percent of the computational cost of
existing VO systems. Hybrid VO has the potential to enable
accurate visual localization on platforms for which previous
VO systems are prohibitively demanding. We have tested
our system in outdoor terrain of varying visual complexity,
including open fields with minimal visual features, and forest
paths where GPS is error-prone and roots and leaves make
wheel slip frequent.

We are currently working on using bearing-only VO to
bootstrap an additional “translation-only VO” step that oper-
ates on very nearby patches at the bottom of the image. Such
patches have usually been difficult to track, as small features
on the ground are often indistinct, whereas larger areas
of texture may require a rotation-invariant representation.
Using the rotation estimate from bearing-only VO, large
ground patches may be rotated in the local ground plane
to their expected orientations in the current frame. The
distance to such nearby patches may be estimated with stereo
vision at a reasonable accuracy even at low resolutions. We
expect such a 3-DOF VO system to be far cheaper than
existing VO methods, which estimate translation and rotation
simultaneously, requiring higher resolutions.

VII. ACKNOWLEDGMENTS

This work was supported by the DARPA LAGR Pro-
gram (Learning Applied to Ground Robots), under contract
HR001105C0038. The authors thank Kurt Konolige and
Motilal Agrawal at SRI for use of their visual odometer, and
gratefully acknowledge the contributions of their teammates
at Net-Scale Technologies and NYU.

REFERENCES

[1] S. Thrun, Exploring artificial intelligence in the new millennium. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003, ch.
Robotic mapping: a survey, pp. 1–35.

[2] C. Bibby and I. Reid, “Simultaneous localisation and mapping in
dynamic environments (slamide) with reversible data association,” in
Proceedings of Robotics: Science and Systems, Atlanta, GA, USA,
June 2007.

[3] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” Proc. of
Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 01,
pp. 652–659, 2004.

[4] M. Agrawal and K. Konolige, “Rough terrain visual odometry,”
Proceedings of the International Conference on Advanced Robotics
(ICAR), August 2007.

[5] H. Schäfer, P. Hahnfeld, and K. Berns, “Real-time visual self-
localisation in dynamic environments,” in Autonome Mobile Systeme,
2007.

[6] A. Brown and D. Sullivan, “Inertial navigation electro-optical aiding
during gps dropouts,” in Proceedings of the Joint Navigation Confer-
ence, 2002.

[7] E. Andersen and C. Taylor, “Improving mav pose estimation using
visual information,” in Proc. of Int’l Conf on Intelligent Robots and
Systems (IROS). IEEE, 2007, pp. 3745–3750.

[8] M. Veth, J. Raquet, and M. Pachter, “Stochastic constraints for efficient
image correspondence search,” Aerospace and Electronic Systems,
IEEE Transactions on, vol. 42, no. 3, pp. 973–982, July 2006.

[9] L. Ojeda, D. Cruz, G. Reina, and J. Borenstein, “Current-based
slippage detection and odometry correction for mobile robots and
planetary rovers,” IEEE Transactions on Robotics and Automation,
vol. 22, no. 2, 2006.

[10] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual
odometry on the mars exploration rovers: Field reports,” Journal of
Field Robotics, vol. 24, no. 3, pp. 169–186, 2007.

[11] C. C. Ward and K. Iagnemma, “Classification-based wheel slip de-
tection and detector fusion for outdoor mobile robots,” in Proc. of
Int’l Conf. on Robotics and Automation (ICRA). IEEE, 2007, pp.
2730–2735.

[12] ——, “Model-based wheel slip detection for outdoor mobile robots,”
in Proc. of Int’l Conf. on Robotics and Automation (ICRA). IEEE,
2007, pp. 2724–2729.

[13] H. D.-W. Salah Sukkarieh, Eduardo Nebot, “A high integrity imu/gps
navigation loop for autonomous land vehicle applications,” in IEEE
Transactions on Robotics and Automation, vol. 15, June 1999.

[14] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Posi-
tioning System: Theory and Practice, 5th ed. Springer-Verlag, 2001.

[15] GPS16/17 Series Technical Specifications, Garmin International, Inc.,
2005.

[16] C. Harris and M. Stephens, “A combined corner and edge detector,,”
in Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147–151.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[18] G. Klein and D. Murray, “Improving the agility of keyframe-based
SLAM,” in Proc. 10th European Conference on Computer Vision
(ECCV’08), Marseille, October 2008, pp. 802–815.

[19] P. Sermanet, R. Hadsell, M. Scoffier, M. Grimes, J. Ben, A. Erkan,
C. Crudele, U. Muller, and Y. LeCun, “A multi-range architecture for
collision-free off-road robot navigation,” Journal of Field Robotics,
2009, to appear.

[20] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu,
U. Muller, and Y. LeCun, “Learning long-range vision for autonomous
off-road driving,” Journal of Field Robotics, 2009, to appear.

