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ABSTRACT

The short history of content-based music informatics re-
search is dominated by hand-crafted feature design, and
our community has grown admittedly complacent with a
few de facto standards. Despite commendable progress in
many areas, it is increasingly apparent that our efforts are
yielding diminishing returns. This deceleration is largely
due to the tandem of heuristic feature design and shallow
processing architectures. We systematically discard hope-
fully irrelevant information while simultaneously calling
upon creativity, intuition, or sheer luck to craft useful rep-
resentations, gradually evolving complex, carefully tuned
systems to address specific tasks. While other disciplines
have seen the benefits of deep learning, it has only re-
cently started to be explored in our field. By reviewing
deep architectures and feature learning, we hope to raise
awareness in our community about alternative approaches
to solving MIR challenges, new and old alike.

1. INTRODUCTION

Since the earliest days of music informatics research (MIR),
content-based analysis, and more specifically audio-based
analysis, has received a significant amount of attention from
our community. A number of surveys (e.g. [8, 22, 29])
amply document what is a decades-long research effort
at the intersection of music, machine learning and signal
processing, with wide applicability to a range of tasks in-
cluding the automatic identification of melodies, chords,
instrumentation, tempo, long-term structure, genre, artist,
mood, renditions and other similarity-based relationships,
to name but a few examples. Yet, despite a heterogeneity
of objectives, traditional approaches to these problems are
rather homogeneous, adopting a two-stage architecture of
feature extraction and semantic interpretation, e.g. classi-
fication, regression, clustering, similarity ranking, etc.

Feature representations are predominantly hand-crafted,
drawing upon significant domain-knowledge from music
theory or psychoacoustics and demanding the engineering
acumen necessary to translate those insights into algorith-
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mic methods. As a result, good feature extraction is hard
to come by and even more difficult to optimize, often tak-
ing several years of research, development and validation.
Due in part to this reality, the trend in MIR is to focus on
the use of ever-more powerful strategies for semantic in-
terpretation, often relying on model selection to optimize
results. Unsurprisingly, the MIR community is slowly con-
verging towards a reduced set of feature representations,
such as Mel-Frequency Cepstral Coefficients (MFCC) or
chroma, now de-facto standards. This trend will only be-
come more pronounced given the growing popularity of
large, pre-computed feature datasets 1 .

We contend the tacit acceptance of common feature ex-
traction strategies is short-sighted for several reasons: first,
the most powerful semantic interpretation method is only
as good as a data representation allows it to be; second,
mounting evidence suggests that appropriate feature rep-
resentations significantly reduce the need for complex se-
mantic interpretation methods [2, 9]; third, steady incre-
mental improvements in MIR tasks obtained through per-
sistence and ingenuity indicate that the the costly practice
of manual feature optimization is not yet over; and fourth,
task-specific features are ill-posed to address problems for
which they were not designed (such as mood estimation
or melody extraction), thus limiting their applicability to
these and other research areas that may emerge.

In this paper we advocate a combination of deep sig-
nal processing architectures and automatic feature learn-
ing as a powerful, holistic alternative to hand-crafted fea-
ture design in audio-based MIR. We show how deeper ar-
chitectures are merely extensions of standard approaches,
and that robust music representations can be achieved by
breaking larger systems into a hierarchy of simpler parts
(Section 3). Furthermore, we also show that, in light of ini-
tial difficulties training flexible machines, automatic learn-
ing methods now exist that actually make these approaches
feasible, and early applications in MIR have shown much
promise (Section 4). This formulation provides several
important advantages over manual feature design: first, it
allows for joint, fully-automated optimization of the fea-
ture extraction and semantic interpretation stages, blurring
boundaries between the two; second, it results in general-
purpose architectures that can be applied to a variety of
specific MIR problems; and lastly, automatically learned
features can offer objective insight into the relevant mu-
sical attributes for a given task. Finally, in Section 5, we

1 Million Song Dataset: http://labrosa.ee.columbia.edu/millionsong/



conclude with a set of potential challenges and opportuni-
ties for the future.

2. CLASSIC APPROACHES TO CLASSIC
PROBLEMS

2.1 Two-Stage Models

In the field of artificial intelligence, computational percep-
tion can be functionally reduced to a two-tiered approach
of data representation and semantic interpretation. A sig-
nal is first transformed into a data representation where its
defining characteristics are made invariant across multiple
realizations, and semantic meaning can subsequently be in-
ferred and used to assign labels or concepts to it. Often the
goal in music informatics is to answer specific questions
about the content itself, such as “is this a C major triad?”
or “how similar are these two songs?”

More so than assigning meaning, the underlying issue
is ultimately one of organization and variance. The better
organized a representation is to answer some question, the
simpler it is to assign or infer semantic meaning. A rep-
resentation is said to be noisy when variance in the data
is misleading or uninformative, and robust when it pre-
dictably encodes these invariant attributes. When a rep-
resentation explicitly reflects a desired semantic organiza-
tion, assigning meaning to the data becomes trivial. Con-
versely, more complicated information extraction methods
are necessary to compensate for any noise.

In practice, this two-stage approach proceeds by feature
extraction – transforming an observed signal to a hope-
fully robust representation – and either classification or re-
gression to model decision-making. Looking back to our
recent history, there is a clear trend in MIR of applying
increasingly more powerful machine learning algorithms
to the same feature representations to solve a given task.
In the ISMIR proceedings alone, there are twenty docu-
ments that focus primarily on audio-based automatic chord
recognition. All except one build upon chroma features,
and over half use Hidden Markov Models to stabilize clas-
sification; the sole outlier uses a Tonnetz representation,
which are tonal centroid features derived from chroma.
Though early work explored the use of simple binary tem-
plates and maximum likelihood classifiers, more recently
Conditional Random Fields, Bayesian Networks, and Sup-
port Vector Machines have been introduced to squeeze ev-
ery last percentage point from the same features.

If a feature representation were truly robust, the com-
plexity of a classifier – and therefore the amount of vari-
ance it could absorb – would have little impact on per-
formance. Previous work in automatic chord recognition
demonstrates the significance of robust feature representa-
tions, showing that the appropriate filtering of chroma fea-
tures leads to a substantial increase in system performance
for the simplest classifiers, and an overall reduction of per-
formance variation across all classifiers [9]. Additionally,
researchers have for some time addressed the possibility
that we are converging to glass ceilings in content-based
areas like acoustic similarity [2]. Other hurdles, like the is-

sue of hubs and orphans, have been shown to be not merely
a peculiarity of the task but rather an inevitability of the
feature representation [20]. As we consider the future of
MIR, it is necessary to recognize that diminishing returns
in performance are far more likely the result of sub-optimal
features than the classifier applied to them.

2.2 From Intuition to Feature Design

Music informatics is traditionally dominated by the hand-
crafted design of feature representations. Noting that de-
sign itself is a well-studied discipline, a discussion of fea-
ture design is served well by the wisdom of “getting the
right design and the design right” [6]. Reducing this apho-
rism to its core, there are two separate facets to be con-
sidered: finding the right conceptual representation for a
given task, and developing the right system to produce it.

Consider a few signal-level tasks in MIR, such as onset
detection, chord recognition or instrument classification,
noting how each offers a guiding intuition. Note onsets are
typically correlated with transient behavior. Chords are de-
fined as the combination of a few discrete pitches. Classic
studies in perception relate timbre to aspects of spectral
contour [12]. Importantly, intuition-based design hinges
on the assumption that someone can know what informa-
tion is necessary to solve a given problem.

Having found conceptual direction, it is also necessary
to craft the right implementation. This has resulted in sub-
stantial discourse and iterative tuning to determine better
performing configurations of the same basic algorithms.
Much effort has been invested in determining which fil-
ters and functions make better onset detectors [3]. Chroma
– arguably the only music-specific feature developed by
our community – has undergone a steady evolution since
its inception, gradually incorporating more levels of pro-
cessing to improve robustness [28]. Efforts to characterize
timbre, for which a meaningful definition remains elusive,
largely proceed by computing numerous features or, more
commonly, the first several MFCCs [11].

In reality, feature design presents not one but two chal-
lenges – concept and implementation – and neither have
proven easy to solve. First off, our features are ultimately
constrained to those representations we can conceive or
comprehend. Beyond relatively obvious tasks like onset
detection and chord recognition, we can only begin to imag-
ine what abstractions might be necessary to perform rather
abstract tasks like artist identification. Furthermore, recog-
nizing that feature extraction is still an open research topic,
the considerable inertia of certain representations is cause
for concern: 19 of 26 signal-based genre classification sys-
tems in the ISMIR proceedings are based on MFCCs, for
example, many using publicly-available implementations.
While sharing data and software is a commendable trend,
now is a critical point in time to question our acceptance
of these representations as we move toward the widespread
use of pre-computed feature collections, e.g. the Million
Song Dataset. Finally, above all else, the practice of hand-
crafted feature design is simply not sustainable. Manually
optimizing feature extraction methods proceeds at a glacial



pace and incurs the high costs of time, effort and funding.
Somewhat ironically, the MIR community has collectively
recognized the benefits of automatically fitting our classi-
fiers, but feature optimization – the very data those meth-
ods depend on – remains largely heuristic.

Alternatively, data-driven approaches in deep learning

have recently shown promise toward alleviating each and
every one of these issues. Proven numerical methods can
adapt a system infinitely faster than is attainable by our cur-
rent research methodology, and the appropriate conceptual
representations are realized as a by-product of optimizing
an objective function. In the following section, we will il-
lustrate how robust feature representations can be achieved
through deep, hierarchical structures.

3. DEEP ARCHITECTURES

3.1 Shallow Architectures

Time-frequency analysis is the cornerstone of audio sig-
nal processing, and modern architectures are mainly com-
prised of the same processing elements: linear filtering,
matrix transformations, decimation in time, pooling across
frequency, and non-linear operators, such as the complex
modulus or logarithmic compression. Importantly, the com-
bination of time-domain filtering and decimation is often
functionally equivalent to a matrix transformation – the
Discrete Fourier Transform (DFT) can be easily interpreted
as either, for example – and for the sake of discussion, we
refer to these operations collectively as projections.

Now, broadly speaking, the number of projections con-
tained within an information processing architecture deter-
mines its depth. It is critical to recognize, however, that
the extraction of meaningful information from audio pro-
ceeds by transforming a time-varying function – a signal
– into an instantaneous representation – features; at some
specificity, all signals represent static concepts, e.g., a sin-
gle piano note versus the chorus of a song. Therefore, the
depth at which a full signal is summarized by a stationary
feature vector is characteristic of a signal processing archi-
tecture, and is said to be particularly shallow if an entire
system marginalizes the temporal dimension with only a
single projection.

This is a subtle, but crucial, distinction to make; fea-

ture projections, lacking a time dimension, are a subset of
signal projections. As we will see, shallow signal process-
ing architectures may still incorporate deep feature projec-
tions, but the element of time warrants special attention. A
signal projection that produces a finite set of stationary fea-
tures attempts to capture all relevant information over the
observation, and any down-stream representations are con-
strained by whatever was actually encoded in the process.
Importantly, the range of observable signals becomes infi-
nite with increasing duration, and it is progressively more
taxing for signal projections – and therefore shallow archi-
tectures – to accurately describe this data without a sub-
stantial loss of information.

To illustrate the point further, consider the two signal
processing architectures that produce Tonnetz and MFCC
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Figure 1: Tonnetz and MFFCs from Shallow Architectures

features. As shown in Figure 1, the processing chains are
nearly identical; note that the penultimate representation
when computing Tonnetz features is chroma. Both begin
with a signal projection that maps a time-domain signal to
an instantaneous estimation of frequency components, and
conclude with a feature projection that reorganizes the esti-
mated frequencies in task-specific ways. The overwhelm-
ing majority of music signal processing architectures op-
erate in this paradigm of shallow signal transformations.
Subject to the Fourier uncertainty principle, these systems
exhibit time-frequency trade-offs and are constrained in
practice to the analysis of short observations.

The vast majority of musical experiences do not live in
short signals however, and it is therefore necessary to char-
acterize information over longer durations. Previous ef-
forts recognize this deficiency and address it through one
of a few simple methods: a bag of frames (BoF) models
features as a probability distribution, shingling concate-
nates feature sequences into a vector, or delta-coefficients

represent low-order derivatives calculated over local fea-
tures. These naive approaches are ill-posed to characterize
the temporal dynamics of high-level musical concepts like
mood or genre, and arguably contribute to the “semantic
gap” in music informatics. It will become clear in the fol-
lowing discussion why this is the case, and how deeper
architectures can alleviate this issue.

3.2 Motivating Deeper Architectures

This previous discussion begs a rather obvious question:
why are shallow architectures poorly suited for music sig-
nal processing? If we consider how music is constructed,
it is best explained by a compositional containment hier-

archy. The space of musical objects is not flat, but rather
pitch and intensity combine to form chords, melodies and
rhythms, which in turn build motives, phrases, sections and
entire pieces. Each level uses simpler elements to produce
an emergent whole greater than the sum of its parts, e.g., a



melody is more than just a sequence of pitches.
In a similar fashion, deeper signal processing structures

can be realized by stacking multiple shallow architectures,
and are actually just extensions of modern approaches. For
a signal projection to marginalize time with a minimal loss
of information, the observation must be locally stationary,
and clearly this cannot hold for long signals. Sequences
of instantaneous features, however, are again time-varying
data and, when appropriately sampled, are themselves lo-
cally stationary signals. There are two remarkable conclu-
sions to draw from this. First, everything we know about
one-dimensional signal processing holds true for a time-
feature signal and can be generalized thusly. And further-
more, simply cascading multiple shallow architectures re-
laxes previous constraints on observation length by pro-
ducing locally stationary signals at various time-scales.

This hierarchical signal processing paradigm is at the
heart of deeper architectures. There are many benefits de-
tailed at length in [4], but two are of principal importance
here: one, multi-layer processing allows for the emergence
of higher-level attributes for two related reasons: deep struc-
tures can break down a large problem into a series of eas-
ier sub-problems, and each requires far fewer elements to
solve than the larger problem directly; and two, each layer
can absorb some specific variance in the signal that is dif-
ficult or impossible to achieve directly. Chord recognition
captures this intuition quite well. One could define every
combination of absolute pitches in a flat namespace and
attempt to identify each separately, or they could be com-
posed of simpler attributes like intervals. Slight variations,
like imperfect intonation, can be reconciled by a composi-
tion of intervals, whereas a flat chord-space would need to
address this explicitly.

Both of these benefits are observed in the successful ap-
plication of convolutional neural networks (CNN) to hand-
written digit classification [25]. Most prior neural network
research in computer vision proceeded by applying multi-
layer perceptrons (MLP) directly to a pixel values of an im-
age, which struggles to cope with spatial variation. Adopt-
ing a CNN architecture introduces a hierarchical decom-
position of small, locally-correlated areas, acting as signal
projections in space rather than time. Emergent properties
of images are encoded in the visual geometry of edges, cor-
ners, and so on, and the architecture is able to develop an
invariance to spatial translations and scaling.

Within audio signal processing, wavelet filterbanks, as
cascaded signal projections, have been shown to capture
long-term information for audio classification [1]. These
second-order features yielded better classification results
than first-order MFCCs over the same duration, even al-
lowing for convincing signal reconstruction of the original
signals. This outcome is evidence to the fact that deeper
signal processing architectures can lead to richer repre-
sentations over longer durations. Observing that multi-
layer architectures are simply extensions of common ap-
proaches, it is fascinating to discover there is at least one
instance in MIR where a deep architecture has naturally
evolved into the common solution: tempo estimation.
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Figure 2: Tempo Estimation with Deep Signal Processing
Architectures.

3.3 Deep Signal Processing in Practice

Upon closer inspection, modern tempo estimation archi-
tectures reveal deep architecture with strong parallels to
CNNs and wavelets. Rhythmic analysis typically proceeds
by decomposing an audio signal into frequency subbands
[31]. This time-frequency representation is logarithmically
scaled and subbands are pooled, reducing the number of
components. Remaining subbands are filtered in time by
what amounts to an edge detector, rectified, pooled along
subbands and logarithmically scaled to yield a novelty func-
tion [23]. A third and final stage of filtering estimates
tempo-rate frequency components in the novelty signal,
producing a tempogram [13].

Over the course of a decade, the MIR community has
collectively converged to a deep signal processing archi-
tecture for tempo estimation and, given this progress, it is
possible to exactly illustrate the advantages of hierarchical
signal analysis. In Figure 2, two waveforms with identi-
cal tempi but different incarnations – a trumpet playing an
ascending D major scale and a series of bass drum hits,
set slightly out of phase – are shown at various stages of
the tempo estimation architecture. It is visually apparent
that each stage in the architecture absorbs a different type
of variance in the signal: pitch and timbre, absolute ampli-
tude, and phase information, respectively. By first breaking
the problem of tempo estimation into two sub-tasks – fre-
quency estimation and onset detection – it becomes possi-
ble to characterize subsonic frequencies at both lower sam-
pling frequencies and with a fewer number of components.

Realistically though, progress in tempo estimation is the



result of strong intuition that could guide system design.
The inherent challenge in building deep, hierarchical sys-
tems is that intuition and understanding quickly depart af-
ter more than even a few levels of abstraction. Therein lies
the most exciting prospect of this whole discourse; given a
well-defined objective function, it is possible to automati-
cally learn both the right conceptual representation and the
right system to produce it for a specific application.

4. FEATURE LEARNING

4.1 From Theory to Practice

For some time, a concerted effort in computer science has
worked toward the development of convex optimization
and machine learning strategies. Unfortunately, the initial
surge of activity and excitement surrounding artificial in-
telligence occurred well before technology could handle
the computational demands of certain methods, and as a
result many approaches were viewed as being intractable,
unreasonable, or both. Over the last two or so decades, the
state of affairs in machine learning has changed dramati-
cally, and for several reasons feature learning is now not
only feasible, but in many cases, efficient.

Almost more importantly than its success as an image
classification system, the work in [25] proved that stochas-
tic gradient descent could be used to discriminatively train
large neural networks in a supervised manner. Given a suf-
ficient amount of labeled data, many applications in com-
puter vision immediately benefited from adopting these ap-
proaches. Such datasets are not always available or even
possible, and recent breakthroughs in unsupervised train-
ing of Deep Belief Networks (DBNs) have had a similar
impact [17]. This work has also been extended to a convo-
lutional variant (CDBNs), showing great promise for deep
signal processing [26]. Additionally, auto-encoder archi-
tectures are a recent addition to the unsupervised training
landscape and offer similar potential [21].

The significance of ever-increasing computational power
is also not to be overlooked in the proliferation of auto-
matic feature learning. Steady improvements in processing
speed are now being augmented by a rise in parallel com-
puting solutions and toolkits [5], decreasing training times
and accelerating research. Taken together, these strategies
encompass a set of deep learning approaches that hold sig-
nificant potential for applications in music informatics.

4.2 Early Efforts in Music Informatics

It is necessary to note that leveraging data to automatically
learn feature representations is not a new idea. The earliest
effort toward automatic feature learning is that of [7, 33],
where genetic algorithms were used to automatically learn
optimized feature transformations.Though not a deep ar-
chitecture in the classic sense, this work formally recog-
nized the challenge of hand-crafting musical representa-
tions and pioneered feature learning in MIR.

With respect to deeper architectures, the first successful
instance of deep feature learning is that of CNN-based on-
set detection by [24]. More recently, CNNs have been ap-

Figure 3: Learned Features for Genre Recognition
(Reprinted with permission)

plied to automatic genre recognition [27], instrument clas-
sification [19] and automatic chord recognition [18]. Alter-
natively, DBNs have seen a noticeable rise in frame-level
applications, such as instrument classification [15], piano
transcription [30], genre identification [14] and mood pre-
diction [32], out-performing other shallow, MFCC-based
systems. Incorporating longer time-scales, convolutional
DBNs have also been explored in the context of various
speech and music classification tasks in [26], and for artist,
genre and key recognition [10]. Predictive sparse coding
has also been applied to genre recognition, earning “Best
Student Paper” at ISMIR 2011 [16].

The most immediate observation to draw from this short
body of work is that every system named above achieved
state-of-the-art performance, or better, in substantially less
time than it took to get there by way of hand-crafted rep-
resentations. Noting that many of these systems are the
first application of deep learning in a given area of MIR,
it is only reasonable to expect these systems to improve in
the future. For instance, DBNs have been primarily used
for frame-level feature learning, and it is exciting to con-
sider what might be possible when all of these methods are
adapted to longer time scales and for new tasks altogether.

A more subtle observation is offered by this last ef-
fort in genre recognition [16]. Interestingly, the features
learned from Constant-Q representations during training
would seem to indicate that specific pitch intervals and
chords are informative for distinguishing between genres.
Shown in Figure 3, learned dictionary elements capture
strong fifth and octave interval relationships versus quar-
tal intervals, each being more common in rock and jazz,
respectively. This particular example showcases the po-
tential of feature learning to reformulate established MIR
tasks, as it goes against the long-standing intuition relating
genre to timbre and MFCCs.

5. THE FUTURE OF DEEP LEARNING IN MIR

5.1 Challenges

Realistically speaking, deep learning methods are not with-
out their own research challenges, and these difficulties are
contributing factors to limited adoption within our commu-
nity. Deep architectures often require a large amount of
labeled data for supervised training, a luxury music infor-



matics has never really enjoyed. Given the proven success
of supervised methods, MIR would likely benefit a good
deal from a concentrated effort in the curation of sharable
data in a sustainable manner. Simultaneously, unsuper-
vised methods hold great potential in music-specific con-
texts, as they tend to circumvent the two biggest issues fac-
ing supervised training methods: the threat of over-fitting
and a need for labeled data.

Additionally, there still exists a palpable sense of mis-
trust among many toward deep learning methods. Despite
decades of fruitful research, these approaches lack a solid,
foundational theory to determine how, why, and if they will
work for a given problem. Though a valid criticism, this
should be appreciated as an exciting research area and not
a cause for aversion. Framing deep signal processing archi-
tectures as an extension of shallow time-frequency analysis
provides an encouraging starting point toward the develop-
ment of more rigorous theoretical foundations.

5.2 Impact

Deep learning itself is still a fledgling research area, and it
is still unclear how this field will continue to evolve. In the
context of music informatics, these methods offer serious
potential to advance the discipline in ways that cannot be
realized by other means. First and foremost, it presents
the capacity for the abstract, hierarchical analysis of music
signals, directly allowing for the processing of information
over longer time scales. It should come as no surprise that
determining the similarity of two songs based on small-
scale observations has its limitations; in fact, it should be
amazing that it works at all.

More practically, deep learning opens the door for the
application of numerical optimization methods to accel-
erate research. Instead of slowly converging to the best
chroma transformation by hand, an automatically trained
system could do this in a fraction of the time, or find a bet-
ter representation altogether. In addition to reframing well-
known problems, deep learning also offers a solution to
those that lack a clear intuition about how a system should
be designed. A perfect example of this is found in auto-
matic mixing; we know a “good” mix when we hear one,
but it is impossible to articulate the contributing factors in
a general sense. Like the work illustrated in Figure 3, this
can also provide insight into what features are informative
to a given task and create an opportunity for a deeper un-
derstanding of music in general.
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