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Abstract As we look to advance the state of the art in content-based music infor-
matics, there is a general sense that progress is decelerating throughout the field.
On closer inspection, performance trajectories across several applications reveal
that this is indeed the case, raising some difficult questions for the discipline: why
are we slowing down, and what can we do about it? Here, we strive to address both
of these concerns. First, we critically review the standard approach to music signal
analysis and identify three specific deficiencies to current methods: hand-crafted
feature design is sub-optimal and unsustainable, the power of shallow architec-
tures is fundamentally limited, and short-time analysis cannot encode musically
meaningful structure. Acknowledging breakthroughs in other perceptual AI do-
mains, we offer that deep learning holds the potential to overcome each of these
obstacles. Through conceptual arguments for feature learning and deeper process-
ing architectures, we demonstrate how deep processing models are more powerful
extensions of current methods, and why now is the time for this paradigm shift. Fi-
nally, we conclude with a discussion of current challenges and the potential impact
to further motivate an exploration of this promising research area.
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1 Introduction

It goes without saying that we live in the Age of Information, our day to day ex-
periences awash in a flood of data. We buy, sell, consume and produce information
in unprecedented quantities, with countless applications lying at the intersection
of our physical world and the virtual one of computers. As a result, a variety
of specialized disciplines have formed under the auspices of Artificial Intelligence
(AI) and information processing, with the intention of developing machines to
help us navigate and ultimately make sense of this data. Coalescing around the
turn of the century, music informatics is one such discipline, drawing from several
diverse fields including electrical engineering, music psychology, computer science,
machine learning, and music theory, among others. Now encompassing a wide spec-
trum of application areas and the kinds of data considered—from audio and text
to album covers and online social interactions—music informatics can be broadly
defined as the study of information related to, or is a result of, musical activity.

From its inception, many fundamental challenges in content-based music in-
formatics, and more specifically those that focus on music audio signals, have
received a considerable and sustained research effort from the community. This
area of study falls under the umbrella of perceptual AI, operating on the premise
that if a human expert can experience some musical event from an audio signal, it
should be possible to make a machine respond similarly. As the field continues into
its second decade, there are a growing number of resources that comprehensively
review the state of the art in these music signal processing systems across a va-
riety of different application areas [31,11,44], including melody extraction, chord
recognition, beat tracking, tempo estimation, instrument identification, music sim-
ilarity, genre classification, and mood prediction, to name only a handful of the
most prominent topics.

After years of diligent effort however, there are two uncomfortable truths facing
content-based MIR. First, progress in many well-worn research areas is decelerat-
ing, if not altogether stalled. A review of recent MIREX1 results provides some
quantitative evidence to the fact, as shown in Figure 1. The three most consis-
tently evaluated tasks for more than the past half decade —chord recognition,
genre recognition, and mood estimation— are each converging to performance
plateaus below satisfactory levels. Fitting an intentionally generous logarithmic
model to the progress in chord recognition, for example, estimates that continued
performance at this rate would eclipse 90% in a little over a decade, and 95%
some twenty years after that; note that even this trajectory is quite unlikely, and
for only this one specific problem (and dataset). Attempts to extrapolate simi-
lar projections for the other two tasks are even less encouraging. Second, these
ceilings are pervasive across many open problems in the discipline. Though single-
best accuracy over time is shown for these three specific tasks, other MIREX
tasks exhibit similar, albeit more sparsely sampled, trends. Other research has
additionally demonstrated that when state-of-the-art algorithms are employed in
more realistic situations, i.e. larger datasets, performance degrades substantially
[8]. Consequently, these observations have encouraged some to question the state of
affairs in content-based MIR: Does content really matter, especially when human-

1 Music Information Retrieval Evaluation eXchange (MIREX): http://www.music-
ir.org/mirex/
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Fig. 1 Losing steam: The best performing systems at MIREX since 2007 are plotted as a
function of time for Chord Recognition (blue diamonds), Genre Recognition (red circles), and
Mood Estimation (green triangles).

provided information about the content has proven to be more fruitful than the
content itself [50]? If so, what can we learn by analyzing recent approaches to
content-based analysis [20]? Are we considering all possible solutions [29]?

The first question directly challenges the raison d’être of computer audition:
is content-based analysis still a worthwhile venture? While applications such as
playlist generation [43] or similarity [39] have recently seen better performance
by using contextual information and metadata rather than audio alone, this ap-
proach cannot reasonably be extended to most content-based applications. It is
necessary to note that human-powered systems leverage information that arises as
a by-product of individuals listening to and organizing music in their day to day
lives. Like the semantic web, music tracks are treated as self-contained documents
that are related to each other through common associations. However, humans do
not naturally provide the information necessary to solve many worthwhile research
challenges simply as a result of passive listening. First, listener data are typically
stationary over the entire musical document, whereas musical information of inter-
est will often have a temporal dimension not captured at the track-level. Second,
many tasks —polyphonic transcription or chord recognition, for example— inher-
ently require an expert level of skill to perform well, precluding most listeners from
even intentionally providing this information.

Some may contend that if this information cannot be harvested from crowd-
sourced music listening, then perhaps it could be achieved by brute force annota-
tion. Recent history has sufficiently demonstrated, however, that such an approach
simply cannot scale. As evidence of this limitation, consider the large-scale com-
mercial effort currently undertaken by the Music Genome Project (MGP), whose
goal is the widespread manual annotation of popular music by expert listeners. At
the time of writing, the MGP is nearing some 1M professionally annotated songs,
at an average rate of 20–30 minutes per track. By comparison, iTunes now offers
over 28M tracks; importantly, this is only representative of commercial music and
audio, and neglects the entirety of amateur content, home recordings, sound ef-
fects, samples, and so on, which will only make this task more insurmountable.
Given the sheer impossibility for humans to meaningfully describe all recorded
music, truly scalable MIR systems will require good computational algorithms.

Therefore, acknowledging that content-based MIR is indeed valuable, we turn
our attention to the other two concerns: what can we learn from past experi-
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4 Eric J. Humphrey et al.

ence, and are we fully exploring the space of possible solutions? The rest of this
paper is an attempt to answer those questions. Section 2 critically reviews conven-
tional approaches to content-based analysis and identifies three major deficiencies
of current systems: the sub-optimality of hand-designing features, the limitations
of shallow architectures, and the short temporal scope of signal analysis. In Sec-
tion 3 we contend that deep learning specifically addresses these issues, and thus
alleviates some of the existing barriers to advancing the field. We offer conceptual
arguments for the advantages of both learning and depth, formally define these
processing structures, and show how they can be seen as generalizations of current
methods. Furthermore, we provide specific arguments as to why it is timely for the
MIR community to adopt these techniques now. To further strengthen the latter
point, Section 4 discusses three recent case studies in music informatics that show-
case the benefits of deep learning. Finally, in Section 5, we conclude with a survey
of challenges and future directions to encourage a more concerted exploration of
this promising research topic.

2 Reassessing Common Practice in Content-based MIR

Despite a broad spectrum of application-specific problems, the vast majority of
music signal processing systems adopt a common two-stage paradigm of feature
extraction and semantic interpretation. Leveraging substantial domain knowledge
and a deep understanding of digital signal theory, researchers carefully architect
signal processing systems to capture useful signal-level attributes, referred to as
features. These statistics are then provided to a pattern recognition machine for the
purposes of assigning semantic meaning to observations. Crafting good features is a
particularly challenging subproblem, and it is becoming standard practice amongst
researchers to use precomputed features2 or off-the-shelf implementations3, focus-
ing instead on increasingly more powerful pattern recognition machines to improve
upon prior work. Therefore, while early research mainly employed simple classifi-
cation strategies such as nearest-neighbors or peak-picking, recent work makes ex-
tensive use of sophisticated and versatile techniques, e.g. Support Vector Machines
[41], Bayesian Networks [42], Conditional Random Fields [51], and Variable-Length
Markov Models [13].

This trend of squeezing every bit of information from a stock feature represen-
tation is arguably suspect because the two-tier perspective hinges on the premise
that features are fundamental. Data must be summarized in such a way that the
degrees of freedom are informative for a particular task; features are said to be
robust when this is achieved, and noisy when variance is misleading or uninforma-
tive. The more robust a feature representation is, the simpler a pattern recognition
machine needs to be, and vice versa. It can be said that robust features generalize
by yielding accurate predictions of new data, while noisy features can lead to the
opposite behavior, known as over-fitting [9]. The substantial emphasis tradition-
ally placed on feature design demonstrates that the community implicitly agrees,
but it is a point worth illustrating. Consider the scenario presented in Figure 2.
The predominant approach to compute how similar two music signals sound is

2 Million Song Dataset
3 MIR Toolbox, Chroma Toolbox, MARSYAS, Echonest API
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Fig. 2 What story do your features tell? Sequences of MFCCs are shown for a real music ex-
cerpt (left), a time-shuffled version of the same sequence (middle), and an arbitrarily generated
sequence of the same shape (right). All three representations have equal mean and variance
along the time axis, and could therefore be modeled by the exact same distribution.

to model their Mel-Frequency Cepstral Coefficients (MFCCs) with a Gaussian
Mixture Model (GMM) and compute some distance measure between them, e.g.
KL-divergence, Earth mover’s distance, etc. [6]. Importantly though, representing
these coefficients as a mixture of Gaussians reduces the observation to mean and
variance statistics, discarding temporal structure. Therefore, the three MFCC se-
quences shown —a real excerpt, a shuffled version of it, and a randomly generated
one— are identical in the eyes of the model. The audio that actually corresponds
to these respective representations, however, will certainly not sound similar to a
human listener.

This bears a significant consequence: any ambiguity introduced or irrelevant
variance left behind in the process of computing features must instead be overcome
by the pattern recognition machine. Previous research in chord recognition has ex-
plicitly shown that better features allow for simpler classifiers [12], and intuitively
many have spent years steadily improving their respective feature extraction imple-
mentations [40,45]. Moreover, there is ample evidence these various classification
strategies work quite well on myriad problems and datasets [9]. Therefore, under-
performing content-based MIR systems are more likely the result of deficiencies in
the feature representation than the classifier used to make sense of it.

It is particularly prudent then, to examine the assumptions and design de-
cisions incorporated into feature extraction systems. In music signal processing,
audio feature extraction typically consists of a recombination of a small set of op-
erations, as depicted in Figure 3: splitting the signal into independent short-time
segments, referred to as blocks or frames; applying an affine transformation, gener-
ally interpreted as either a projection or filterbank; applying a non-linear function;
and pooling across frequency or time. Some of these operations can be, and often
are, repeated in the process. For example, MFCCs are computed by filtering a
signal segment at multiple frequencies on a Mel-scale (affine transform), taking
the logarithm (non-linearity), and applying the Discrete Cosine Transform (affine
transformation). Similarly, chroma features are produced by applying a constant-Q
filterbank (affine transformation), taking the complex modulus of the coefficients
(non-linearity), and summing across octaves (pooling).

Considering this formulation, there are three specific reasons why this ap-
proach might be problematic. First, though the data-driven training of classifiers
and other pattern recognition machines has been standard for over a decade in mu-
sic informatics, the parametrization of feature extractors —e.g. choice of filters,
non-linearities and pooling strategies, and the order in which they are applied—
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Fig. 3 State of the art : Standard approaches to feature extraction proceed as the cascaded
combination of a few simpler operations; on closer inspection, the main difference between
chroma and MFCCs is the parameters used.

remains, by and large, a manual process. Both feature extraction and classifier
training present the same basic problem: there is a large solution space and, some-
where in it, a configuration that optimizes an objective function over a dataset.
Though the music informatics community is privileged with a handful of talented
researchers who are particularly adept at exploring this daunting space, crafting
good features can be a time consuming and non-trivial task. Additionally, carefully
tuning features for one specific application offers no guarantees about relevance
or versatility in another scenario. As a result, features developed for one task —
chroma for chord recognition [21] or MFCCs in speech [16]— are used in others
they were not specifically designed for, e.g. structural segmentation [38] or music
classification [41]. The caveat of repurposing features designed for other applica-
tions is that, despite potentially giving encouraging results, they are not optimized
for this new use case. In fact, recent research has demonstrated that better features
than MFCCs exist for speech recognition [26], the very task they were designed for,
so it is almost certain that there are better musical features as well. Therefore, the
conclusions to draw from this are twofold: continuing to manually optimize a fea-
ture representation is not scalable to every problem, and we may be unnecessarily
constraining our search of the solution space.

Second, these information processing architectures can be said to be shallow,
i.e. incorporating only a few non-linear transformations in their processing chain.
Sound, like other real-world phenomena, naturally lives on a highly non-linear
manifold within its time-domain representation. Shallow processing structures are
placed under a great deal of pressure to accurately characterize the latent com-
plexity of this data. Feature extraction can thusly be conceptualized as a function
that maps inputs to outputs with an order determined by its depth; for a compre-
hensive discussion on the merits and mathematics of depth, we refer the curious
reader to [3]. Consider the example in Figure 4, where the goal is to compute a
low-dimensional feature vector (16 coefficients) that describes the log-magnitude
spectrum of a windowed violin signal. One possible solution to this problem is
to use a channel vocoder which, simply put, low-pass filters and decimates the
spectrum, producing a piece-wise linear approximation of the envelope. It is clear,
however, that with only a few linear components we cannot accurately model
the latent complexity of the data, obtaining instead a coarse approximation. Al-
ternatively, the cepstrum method transforms the log-magnitude spectrum before
low-pass filtering. In this case, the increase in depth allows the same number of
coefficients to more accurately represent the envelope. Obviously, powerful pattern
recognition machines can be used in an effort to compensate for the deficiencies of
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Fig. 4 Low-order approximations of highly non-linear data: The log-magnitude spectra of a
violin signal (black) is characterized by a channel vocoder (blue) and cepstrum coefficients
(green). The latter, being a higher-order function, is able to more accurately describe the
contour with the same number of coefficients.

a feature representation. However, shallow, low-order functions are fundamentally
limited in the kinds of behavior they can characterize, and this is problematic
when the complexity of the data greatly exceeds the complexity of the model.

Third, short-time signal analysis is intuitively problematic because the vast
majority of our musical experiences do not live in hundred millisecond intervals,
but at least on the order of seconds or minutes. Conventionally, features derived
from short-time signals are limited to the information content contained within
each segment. As a result, if some musical event does not occur within the span of
an observation —a motif that does not fit within a single frame— then it simply
cannot be described by that feature vector alone. This is clearly an obstacle to
capturing high-level information that unfolds over longer durations, noting that
time is extremely, if not fundamentally, important to how music is perceived.
Admittedly, it is not immediately obvious how to incorporate longer, or even mul-
tiple, time scales into a feature representation, with previous efforts often taking
one of a few simple forms. Shingling is one such approach, where a consecutive
series of features is concatenated into a single, high-dimensional vector [11]. In
practice, shingling can be fragile to even slight translations that may arise from
tempo or pitch modulations. Alternatively, bag-of-frames (BoF) models consider
patches of features, fitting the observations to a probability distribution. As ad-
dressed earlier with Figure 2, bagging features discards temporal structure, such
that any permutation of the feature sequence yields the same distribution. The
most straightforward technique is to ignore longer time scales at the feature level
altogether, relying on post-filtering after classification to produce more musically
plausible results. For this to be effective though, the musical object of interest
must live at the time-scale of the feature vector or it cannot truly be encoded.
Ultimately, none of these approaches are well suited to characterizing structure
over musically meaningful time-scales.

2.1 A Concise Summary of Current Obstacles

In an effort to understand why progress in content-based music informatics is
plateauing, we have reviewed the standard approach to music signal processing
and feature design, deconstructing assumptions and motivations behind various
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8 Eric J. Humphrey et al.

decisions. As a result, three potential areas of improvement are identified. So that
each may be addressed in turn, it is useful to succinctly restate the main points
of this section:

– Hand-crafted feature design is neither scalable nor sustainable: Fram-
ing feature design as a search in a solution space, the goal is to discover the
configuration that optimizes an objective function. Even conceding that some
gifted researchers might be able to achieve this on their own, they are too few
and the process too time-consuming to realistically solve every feature design
challenge that will arise.

– Shallow processing architectures struggle to describe the latent com-
plexity of real-world phenomena: Feature extraction is similar in principle
to compactly approximating functions. Real data, however, lives on a highly
non-linear manifold and shallow, low-order functions have difficulty describing
this information accurately.

– Short-time analysis cannot naturally capture higher level informa-
tion: Despite the importance of long-term structure in music, features are
predominantly derived from short-time segments. These statistics cannot cap-
ture information beyond the scope of its observation, and common approaches
to characterizing longer time scales are ill-suited to music.

3 Deep Learning: A (Slightly) Different Direction

Looking toward how we might begin to address these specific shortcomings in
modern music signal processing, there is a renaissance currently underway in com-
puter science. Deep learning is riding a wave of promise and excitement in multiple
domains, toppling a variety of long-standing benchmarks, but has yet to gain sig-
nificant traction in music informatics. Here, we present the argument that by
reframing music signal analysis as a deep learning problem, it may be possible to
overcome every issue named previously. To first motivate this stance, it is particu-
larly useful to break down the ideas behind the very name itself. We then formally
define some basic elements of deep signal processing architectures, and illustrate
how these methods are simply extensions of current systems. Lastly, we discuss
how recent breakthroughs in unsupervised learning have greatly reduced the need
for large collections of annotated data, thereby making deep learning practical for
a wide range of applications.

3.1 Why Learning?

In broad terms, an overarching goal of information processing is the design of
computational systems that model some observed behavior; for an input, x, find a
function, f(·), that produces the desired output, y. Perhaps the simplest example
of this notion is that of a line, defined by the equation y = mx+ b. Collecting the
parameters asΘ = [m, b], the space of all lines can be compactly represented by y =
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fLine(x|Θ). We can then borrow the language of objected oriented programming
and say that the equation defines the function’s class, whereas the parameters
define its instance. Therefore, restating for clarity, a function is a specific instance
of a general equation class.

Now, suppose that we wish to model the relationship between a collection of
input data and corresponding outputs. Assuming these output values are known,
it is possible to objectively measure how well a function approximates this rela-
tionship, which we will call its fitness. Consider for a moment that there exists a
hypothetical space of all possible solutions and, in it, at least one function that
optimally satisfies this measure. Thus, the goal of finding such a function can be
thought of as a search, and, for the sake of discussion, we offer that “learning” and
“searching” can be used interchangeably. Unfortunately, the space of all possible
functions is effectively infinite and intractable to explore exhaustively, automat-
ically or otherwise. However, conceptualizing a function in terms of classes and
instances provides an elegant way of making this search significantly more man-
ageable: a function’s class, which can be purposefully designed, greatly reduces the
space of all possible instances to a much smaller subspace that can be explored.

Given this view of finding objectively good functions, it is interesting to again
consider conventional approaches to feature design. As addressed previously, fea-
ture extraction and classification are often treated as independent system compo-
nents. Features are designed by leveraging an explicit idea about what the output
should conceptually represent and the engineering acumen necessary to encode
it. Therefore, these representations are, by definition, limited to those concepts
we can both imagine and implement. Importantly though, the quality of a fea-
ture representation cannot be measured directly, but only after “fitting” a pattern
recognition machine to it. Designing a function —both class and instance— capa-
ble of producing the optimal feature representation is especially difficult because
there are two free variables: the equation and its parameters. The common strat-
egy to deal with this problem is to design the feature representation manually, fit
a classifier to the data, and repeat until performance improves. Not only is this
arduous, but it is potentially unnecessary; there exist a variety of numerical op-
timization methods and search algorithms to automatically solve such problems.
This is hardly a new observation, as demonstrated by the work of Cabral and
Pachet [10]. Their proposed EDS system searches the space of feature extraction
functions by defining a set of possible operations and using the genetic algorithm
(GA) to find good configurations of these parts.

With this in mind, the distinction between function classes and instances is an
integral one to make. By heavily restricting the space of possible solutions, auto-
matically searching a subspace becomes feasible. Even more encouraging, adopting
an objective fitness measure of a function that is differentiable with respect to its
parameters allows for the application of gradient methods to find good instances
[36], offering two significant benefits. Practically speaking, gradient methods will
find optima of a fitness measure, whereas other search strategies either offer no
convergence guarantees or are too computationally intensive. Once numerical opti-
mization is feasible, this frees the researcher to focus less on the specific parameters
of a system and more on the abstract design of the underlying model, using domain
knowledge to steer it toward certain kinds of solutions. Therefore, learning is ad-
vantageous because it can simplify the overall design problem, accelerate research,
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10 Eric J. Humphrey et al.

yield flexible systems that can adapt to new data, and facilitate the discovery of
new solutions not previously considered.

3.2 Why Deep?

As seen from the earlier discussion of shallow architectures, complex manifolds
can be extremely difficult to describe with simple systems, and may require a
large number of piece-wise components to closely model this data. Therefore, if
we are to accurately model or characterize real-world signals, higher order systems
are necessary. In the same way that learning and searching are functionally inter-
changeable in the previous section, here depth and order are synonymous. As a
complementary attribute, the breadth of a function is defined by the number of
parallel components in a transformation [5].

There is mathematical rigor behind the trade-off between depth and breadth
of a processing structure [3,35], but a classic example adequately illustrates these
principles. Early work in computer science focused on using processing structures
to learn and implement Boolean logic operations. It was shown early on that the
Perceptron, a simple non-linear model, could not achieve certain functions, namely
the exclusive-or (XOR). Expressed symbolically, for two inputs p and q, the XOR
is defined as the following operation:

p⊕ q = (p ∧ ¬q) ∨ (¬p ∧ q) (1)

While it is true that one Perceptron cannot capture this behavior, a composite
of three Perceptrons can. Each parenthetical proposition in Eq. (1) is within the
capacity of a single Perceptron, and a third Perceptron is able to achieve the desired
logic function by composing the two simpler statements. It is of utmost importance
to appreciate that a second-order cascade of simple processing elements is more
powerful than the first-order parts alone. This property, where a composed whole
is greater than the sum of its parts, is known as emergence, and is characteristic
of complex systems.

Hierarchical composition —realizing complex structures through the combi-
nation of simpler parts— is fundamental to the representational power of deep
information processing architectures, but why does this matter for music? The
answer, quite literally, is that music is composed : pitch and loudness combine over
time to form chords, melodies and rhythms, which in turn are built into motives,
phrases, sections and, eventually, construct entire pieces. This is the primary rea-
son shallow architectures are ill-suited to represent high-level musical concepts and
structure. A melody does not live at the same level of abstraction as a series of
notes, but is instead a higher, emergent quality of those simpler musical objects.
At its core, music is structured, and processing architectures capable of encoding
these relationships are necessary to adequately characterize this information.

3.3 Simple Parts, Complex Structures

Before proceeding, we would first like to draw attention a slight matter of formu-
lation. There are, roughly speaking, two equivalent perspectives to deep learning:
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discriminative and probabilistic deep networks. For reasons that will become ap-
parent shortly, we frame the following discussion in the context of the former due
to strong parallels with digital signal theory; for the probabilistic perspective, we
refer to [34].

The one constant spanning all deep networks is the idea that larger processing
structures can be composed of smaller, adaptable components. One of the first
fundamental building blocks in artificial neural network research is the non-linear
affine transformation:

Y = h(W ·X + b) (2)

Here, an input column vector, XN , is transformed to an output column vector,
Y K , by taking the inner product with a matrix of coefficients WK×N , a vector of
biases bK , and typically a non-linear activation h(·), i.e. the hyperbolic tangent
or sigmoid function. Recalling the previous discussion of classes and instances,
many familiar transforms can be recovered from this one class of functions. For
example, defining W = exp(−2πjkn/N), b = 0, and h(·) = log10(| · |) yields the
log-magnitude spectra of the Discrete Fourier Transform (DFT), or, dropping the
non-linearity, W can be computed from a Principal Components Analysis (PCA)
over a collection of data, to name two specific instances. In this sense, layers in a
deep network can be viewed as a generalization of many common transformations
used in music signal processing, and, vice versa, common processing structures
could be generalized to fit inside the framework of deep networks, e.g. convolution,
downsampling, standardization, etc.

Another interesting consequence of the observation that neural networks share
a common formulation with the DFT is that they must also share a filterbank
interpretation when applied to time domain signals. In this case, the matrix W
can be viewed as a set of K, N -length Finite Impulse Response (FIR) filters,
expressed by the following difference equation:

yk[n] = h(bk,0 + wk,0x[n] + wk,1x[n− 1] . . .+ wk,N−1x[n−N + 1]) (3)

Adopting a digital signal processing perspective of such architectures provides al-
ternate ways of understanding the role these different processing elements play
in the network. For example, pooling, or simply the reduction of datapoints, can
be seen as different forms of decimation in time or frequency, whereas a non-
linearity like full-wave rectification (complex modulus) has a demodulation effect.
Therefore, much of the intuition that goes into filter design and digital signal pro-
cessing is also relevant to the design of deep networks. Interestingly enough, while
conventional filter design typically requires filterbanks to be linear to make the
analysis tractable, we have seen how the representational power of linear systems
can be quite limited. Reformulating digital filters as deep networks unlocks the
potential to build higher order, non-linear functions with adaptable, data-driven
parameterizations.

3.4 The Natural Evolution of Deep Architectures

In the previous two sections, we have made the case that deeper processing struc-
tures are better suited to characterize complex data, and drawn attention to the
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Subband
Decomposition

Onset
Detection

Periodicity
Analysis

Audio

Transformation

Rectification

Non-linear
Compression

Pooling

Time-Frequency Representation

Novelty Function

Tempo Spectra

Argmax

Fig. 5 A complex system of simple parts: Tempo estimation has, over time, naturally con-
verged to a deep architecture. Note how each processing layer absorbs a different type of vari-
ance —pitch, absolute amplitude, and phase— to transform two different signals into nearly
identical representations.

realization that the building blocks in deep learning share a common formulation
with standard operations in digital signal theory. It should come as little sur-
prise then that there are instances where deep signal processing structures have
developed in the due course of research, and there are two worth illustrating here.

For some time, state of the art tempo estimation algorithms have been based
on deep, non-linear processing architectures. The high-level intuition behind sys-
tem design is relatively straightforward and, as evidenced by various approaches,
widely agreed upon; first identify the occurrence of musical events, or onsets, and
then estimate the underlying periodicity. The earliest efforts in tempo analysis
tracked symbolic events [15], but it was soon shown that a time-frequency repre-
sentation of sound was useful in encoding rhythmic information [47]. This led to
in-depth studies of onset detection [2], based on the idea that “good” impulse-like
signals, referred to as novelty functions, would greatly simplify periodicity anal-
ysis. Along the way, it was also discovered that applying non-linear compression
to a novelty function produced noticeably better results [31]. Various periodicity
tracking methods were simultaneously explored, including oscillators [19], multiple
agents [22], inter-onset interval histograms [18], and tuned filterbanks [23].

Reflecting on this lineage, system design has, over the last two decades, ef-
fectively converged to a deep learning architecture, minus the learning, where the
same processing elements —filtering and transforms, non-linearities, and pooling—
are replicated over multiple processing layers. Interestingly, as shown in Figure 5,
visual inspection demonstrates why it is particularly well suited to the task of
tempo estimation. Here we consider two input waveforms having nothing in com-
mon but tempo; one is an ascending D Major scale played on a trumpet, and the
other is a delayed series of bass drum hits. It can be seen that, at each layer, a
different kind of variance in the signal is removed. The filterbank front-end absorbs
rapid fluctuations in the time-domain signal, spectrally separating acoustic events.
This facilitates onset detection, which provides a pitch and timbre invariant esti-
mate of events in the signal, reducing information along the frequency dimension.
Lastly, periodicity analysis eliminates shifts in the pulse train by discarding phase
information. At the output of the system, these two acoustically different inputs
have been transformed into nearly identical representations. The main takeaway,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Feature Learning and Deep Architectures: New Directions for Music Informatics 13

therefore, is that deep architectures are able to absorb variance in the data over
multiple layers, turning one complex problem into a series of simpler ones.

More recently, multi-level wavelet filterbanks, referred to as scattering trans-
forms, have shown promise for audio classification by capturing information over
not only longer, but also multiple, time-scales [1]. Recognizing MFCCs as a first-
order statistic, this second-order system yielded better classification results over
the same observation length while also achieving convincing reconstruction of the
original signals. The authors demonstrate their approach to be a multi-layer gen-
eralization of MFCCs, and exhibit strong parallels to certain deep network archi-
tectures, although the parameterization here is not learned but defined. Perhaps
a more intriguing observation to draw from this work though is the influence a
fresh perspective can have on designing deep architectures. Rather than simply
propagating all information upwards through the structure, as is common in deep
learning, the system keeps summary statistics at each timescale, leading to better
performance.

3.5 Why now?

The major obstacle in deep learning has always been the issue of parameter opti-
mization. Historically, deep networks relied almost entirely on supervised training,
i.e. using a large amount of ground-truth data to explicitly direct a system to pro-
duce the correct outputs, and were infamously slow to converge. Large annotated
datasets are quite difficult to curate, and as a result deep networks were prone to
poor local minima and overfitting from insufficient training data.

In 2006, Hinton et al. showed that unsupervised training could leverage unla-
beled data by encouraging an adaptable network to generate realistic data [27].
Building a deep network proceeds by adding a layer to the network, greedily train-
ing it to convergence, and then freezing those parameters; this repeats until reach-
ing the desired architectural depth. Then, to address task-specific questions, the
parameters of the network are “fine-tuned” in a supervised manner. In practice,
unsupervised “pre-training” acts as a strong, data-driven prior that initializes pa-
rameters closer to a final solution, avoiding poor local minima and requiring less
labeled data for training [4].

The core concept behind this approach is that of reconstructing previously
observed data; if a model can project information into an alternate representation
and back again with minimal error, salient characteristics must be encoded in
that intermediary representation. Stated in a more intuitive manner, if you can
take something apart and successfully put it back together, you are inherently
discovering its most important components. Defining explicitly, the goal is to learn
both a forward and inverse transform, f and f−1, that minimizes the error between
the input Xin and its reconstituted version Xrec:

Y = f(Xin | Θf )
Xrec = f−1(Y | Θi)

(4)

Recalling the discussion of Section 3.3, note that this is the same formulation
of the forward and inverse DFT, which happens to achieve perfect reconstruction
by way of two complementary affine transformations. Importantly though, the
DFT is a versatile, but ultimately general, transform that projects a signal onto a
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Input Space Code Space Reconstructed Space

Fig. 6 Learning where the data lives: A hypothetical, non-linear manifold is contained within
an over-complete input space. Though the data (green) are distributed irregularly, there exists
some projection that can transform this data to an invertible representation without a loss of
information.

pre-defined set of complex sinusoids, which may have little to do with the actual
data being transformed. Learning invertible transforms is an effective unsupervised
objective because it adapts a decomposition to the data being analyzed, thus
discovering the lower dimensional manifold on which the information lives. As
shown by the cartoon illustration given in Figure 6, sound can be thought of as
being unevenly concentrated in dense regions of the space it occupies, i.e. a discrete
digital representation. A simple thought experiment motivates this idea. If sound
were uniformly distributed within this representation, the overwhelming majority
of our acoustic experience would be white noise. We know from experience though
that such signals are thankfully quite rare, and instead many naturally occurring
sounds are even harmonic. Therefore sound must not be distributed uniformly, and
that the space of possible sounds is over-complete compared to the range actual
sounds that naturally occur. Unsupervised learning works by taking advantage of
this very strong prior on the data, in that we can assume all sound is distributed
similarly within its representation.

Complementary to the principles of unsupervised learning, there are also situa-
tional factors that strengthen the timeliness of these methods. First and foremost,
there is an overwhelming amount of unlabeled data available for unsupervised
methods to absorb, allowing labeled datasets to be reserved for fine-tuning and
evaluation. Additionally, significant increases is computational power, and espe-
cially advances in parallel computing via GPUs, make many of these approaches
not only feasible, but in some cases quite efficient. As evidenced by the recent
work of [32], we are even starting to see attempts at large scale deep learning. In
a similar vein, software libraries and toolkits [7,14] are now available that lever-
age these computational gains to make deep learning more accessible to the entire
research community.

4 Case Studies in Music Informatics

Though the MIR community has been somewhat hesitant to adopt feature learning
and deeper architectures, there is an increasing effort to explore these research
avenues. One of the earliest instances is that of sparse audio coding, which is
relevant to the discussion as a data-driven approach to signal analysis. Sparse
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Fig. 7 Learning a well-organized representation: The representations of various instrument
sounds are shown via NLSE (left) and PCA of MFCCs (right) for five instrument classes: Tuba
(red pentagons), Oboe (green diamonds), Clarinet (purple triangles), Cello (blue circles) and
Flute (yellow squares).

coding has been shown to yield useful representations for a variety of applications,
such as instrument recognition [37] and polyphonic transcription [46], but is limited
in practice by a slow inference process. Also, as mentioned earlier, previous work
has leveraged search algorithms to optimize feature transformations for various
tasks, such as music description or chord recognition [52,10]. Deeper processing
structures are also gaining popularity in music informatics, ranging from work
on frame-wise representations, like in genre classification [25] or mood estimation
[48], to slight reformulations of classic problems, as in artist identification [17]
or chord recognition [28]. However, from this modest corpus of deep learning in
music informatics, there are three notable instances worth highlighting here that
aptly demonstrate the potential these methods hold to overcome the shortcomings
outlined in Section 2.1.

4.1 Better Features, Simpler Classifiers

One of the recurring themes in this discussion is the emphasis placed on the or-
ganization and robustness of a feature space, or conversely the degree of variance
absorbed in the course of feature extraction. While it is intuitively appealing that
better features relax the stress placed on a classifier, this has been demonstrated
explicitly in the context of instrument classification via deep learning [30]. The
goal of this work is to project monophonic instrument sounds into an intuitive,
i.e. low-dimensional and metric, representation. Extending the previous approach
presented in [24], this is achieved by learning a Non-Linear Semantic Embedding
(NLSE) via a convolutional neural network (CNN). The network is trained by
making a copy of itself and defining the loss function as the Euclidean distance
between the outputs of the two identical networks. This way, a feature space is
learned where the distance between similar inputs is small and dissimilar inputs
is large. Rather than projecting data to absolute positions in the output space,
pairwise training allows the machine to discover an embedding that optimally
preserves the relative relationship between two inputs.

For an input, the network operates on patches of constant-Q pitch spectra, such
that translations of the kernels in the CNN are linear with respect to both pitch
and time. As a baseline comparison, a PCA of MFCCs is also considered, keeping
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Fig. 8 Finding meaning from features: Automatically learning what attributes are informative
for a given task may lead to unexpected insights, such as pitch intervals —quartal chords (left)
and power chords (right)— informing genre classification, a task classically dominated by
timbre features. (Reprinted with permission)

only the first 3 dimensions. To demonstrate the level of semantic organization in
the feature space, a näıve k-nearest neighbor is used to classify points as different
instruments. For the 5-class embeddings shown in Figure 7, overall classification
accuracies for NLSE and PCA are 98% and 63%, and for ranked retrieval the
mean-average precision (MAP) scores are 0.734 and 0.212, respectively. Whether
or not a more powerful classifier could improve accuracy over the PCA features is
irrelevant; the key takeaway from this example is that simple methods are sufficient
when the feature space is well organized. Furthermore, the inherent structure of
well organized representations makes it particularly attractive as a user interface
for navigating and exploring large sound libraries.

4.2 Learning from Feature Learning

Another critical point addressed throughout this article is that feature learning
creates the opportunity to discover useful attributes that might not be considered
in the process of manual feature design. While this might be an easy argument
to make for particularly abstract tasks —after all, what are the limits of intro-
spection when determining why two songs are similar?— some research in feature
learning has shown it is possible to discover unexpected attributes that are useful
to well-worn problems. One such instance is the work by Henaff et al., who applied
Predictive Sparse Decomposition (PSD) to the task of genre recognition, achieving
state of the art results. As mentioned previously, sparse coding can be useful in
classification tasks, but is generally impractical in most applications due to the
slow inference process of computing optimal sparse codes. Using this observation
as a starting point, PSD trains a logistic regressor to approximate, or predict, an
input’s sparse code, such that inference can be achieved by a single matrix mul-
tiplication. As opposed to the distributed coordinate space shown in the previous
example, the forward projection learned via PSD is over-complete because sparse
representations are more likely to be linearly separable in high dimensions, i.e.
informative attributes are separated along the different axes of the space.

Using a linear SVM, the proposed system performs competitively with other
state of the art methods (84.3%), while offering the benefit of fast inference. An
unexpected consequence of this work is the realization that certain feature de-
tectors, learned from constant-Q representations, seem to encode distinct pitch
intervals. As illustrated in Figure 8, these components are indicative of different
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Fig. 9 Same notes, different chord? : Here, the same collection of simultaneous notes —a G
power chord— in bars 2 and 4 are heard as Major and minor, respectively, because of prior
context —the B and B flat in bars 1 and 3.

uses of harmony. For example, power chords are common in rock and popular mu-
sic, but unlikely in jazz. In the opposite scenario, quartal chords are common in
jazz, but less so in rock and pop. This observation is especially profound, because
the long-standing assumption in feature design for genre recognition is that spec-
tral contour matters much more than harmonic information, as evidenced by the
volume of publications that exclusively make use of MFCCs. Given the current
state of affairs in music informatics, it is hardly a stretch of the imagination to
assume that similar discoveries might occur in other classic problems, or inform
new tasks that lack a good intuition toward feature design.

4.3 Encoding Longer Musical Structure

In the classic view of automatic chord recognition, a common definition of a chord
is the “simultaneous sounding of two or more notes” [42]. As a result, most work
operates on the assumption that frame-level observations of a music signal are
sufficient to assign observations to particular chord classes. It was shown early on
that this approach could be significantly improved upon by adding a musically mo-
tivated sequence model after the pattern recognition stage to smooth classification
results [49]. This is necessary because, even in modern popular Western music, the
explicit use of chords is rarely straightforward. In practice, real music signals often
comprise complex tonal scenes that often only imply a particular chord, typically
in the presence of salient vocal melodies that artfully utilize non-chord tones. Fur-
thermore, certain chords can only be distinguished as major or minor, the typical
problem formulation, by considering prior context. A characteristic example of this
is given in Figure 9. Here, four monophonic notes proceed a G power chord in two
scenarios; in the first bar, the second quarter note is a B natural, or the 3rd scale
degree in G Major, whereas in the third bar, the second quarter note is a B flat,
or the 3rd scale degree in G minor. Therefore, even though the chords in bars two
and four are composed of the exact same notes, they are heard as having major
and minor qualities, respectively, due to prior harmonic context.

In an effort to account for this behavior, the work presented in [28] adopts a
slightly different view of chord recognition. Using a CNN to classify five-second
tiles of constant-Q pitch spectra, an end-to-end chord recognition system is pro-
duced that considers context from input observation to output label. Figure 10
illustrates how receptive fields, or local feature extractors, of a convolutional net-
work build abstract representations as the hierarchical composition of parts over
time. Lower level behaviors are encoded in mid-level feature maps, which can be
again combined with other mid-level features and encoded at the next level, and
so on up the hierarchy. At the highest level, the abstract representation can be
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(i) (ii) (iii) (iv)

Fig. 10 A hierarchy of harmony: Operating on five-second CQT patches as an input (i), the
receptive fields of a CNN encode local behavior in feature maps (ii) at higher levels. This
process can then be repeated (iii), allowing the network to characterize high-level attributes as
the combination of simpler parts. This abstract representation can then be transformed into
a probability surface (iv) for classifying the input.

transformed into a probability density function (PDF) and the winning chord class
taken as the argmax() of the PDF. As an initial inquiry in CNN-based chord recog-
nition, the system achieves results competitive with the state of the art (77.48%)
on a large, publicly available corpus of chord annotations. This is particularly en-
couraging for a few reasons. First and foremost, building context into the feature
representation greatly reduces the need for post-filtering after classification. There-
fore, this accuracy is achieved by a causal chord recognition system, a potentially
desirable property precluded by the application of the general Viterbi algorithm.
Additionally, this is merely the first attempt in an otherwise unexplored research
area, and there is ample room for improvement over these results. Variations in
training strategy, the underlying processing model, choice of input representation
or breadth of chord vocabulary open the door for several promising “next steps”
in chord recognition.

5 The Future of Deep Learning in MIR

In this article, we have sought to better understand the current state of affairs in
content-based music informatics and diagnose potential deficiencies in state of the
art approaches, finding three specific shortcomings: hand-crafted feature design is
not sustainable, shallow architectures are fundamentally limited, and short-time
analysis alone fails to capture long-term musical structure. Several arguments then
motivate the position that deep learning is particularly well-suited to address
each of these difficulties. By embracing feature learning, it is possible to optimize
a system’s internal feature representation, perhaps even discovering it outright,
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while deep architectures are especially well-suited to characterize the hierarchical
nature of music. It was further shown that the community is already beginning
to naturally adopt parts of the broader deep learning landscape, and that these
methods can be seen as the next logical step in the research trajectory. As we look
toward exploring these methods further in the context of MIR, it is beneficial to
outline domain-specific challenges and the impact such a conceptual reformulation
might have on the discipline.

5.1 Outstanding Challenges

Reflecting on the entire discourse, there are a few legitimate obstacles to this line
of research. The most immediate hurdle facing the adaptation of deep learning to
music signal processing is merely a matter of literacy and the successful applica-
tion of these methods to classic problems in MIR. There is an empirical sense of
skepticism regarding neural networks among many in the various perceptual AI
communities, including MIR, due in no small part to the exaggerated promises of
very early research, and popular opinion has not evolved with the science. One step
toward updating this perspective is through discussions like this one, by demys-
tifying the proverbial “black box” and understanding what, how, and why these
methods work. Additionally, reframing traditional problems in the viewpoint of
deep learning serves as an established starting point to begin developing a good
comprehension of implementing and realizing these systems. In a similar vein, the
MIR community also possesses a mastery of digital signal theory and processing
techniques, insight that could, and should, be applied to deep networks to better
formulate novel or alternative theoretical foundations.

Another, more widely known problem is the practical difficulty behind getting
such methods to “work,” which takes a few different forms. Though the features,
and more specifically the parameters, learned by the model are data-driven, the
successful application of deep learning necessitates a thorough understanding of
these methods and how to apply them to the problem at hand. Various design
decisions, such as model selection, data pre-processing, and carefully choosing
the building blocks of the system, can impact performance on a continuum from
negligible differences in overall results to whether or not training can, or will,
converge to anything useful. Likewise, the same kind of intuition holds for adjusting
the various hyperparameters —learning rate, regularizers, sparsity penalties— that
may arise in the course of training. The important thing to recognize though is
that these are skills to be learned. Using deep learning presents a design problem
not altogether different from the one with which we are familiar, but the approach
is overtly more abstract and conceptual, placing a greater emphasis on high-level
decisions like the choice of network topology or appropriate loss function.

That said, one of the more enticing challenges facing music informatics is that
time-frequency representations, though two-dimensional, are fundamentally not
images. When considering the application of deep learning to MIR problems, it
is prudent to recognize that the majority of progress has occurred in computer
vision. While this gives our community an excellent starting point, there are many
assumptions inherent to image processing that start to break down when working
with audio signals. One such instance is the use of local receptive fields in deep
learning, common in CNNs and, more recently, tiled networks [33]. In these archi-
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tectures, it is known that the strongest correlations in an image occur within local
neighborhoods, and this knowledge is reflected in the architectural design. Lo-
cal neighborhoods in frequency do not share the same relationship, so the natural
question becomes, “what architectures do make sense for time-frequency represen-
tations?” As we saw previously, CNNs yield encouraging results on time-frequency
representations of audio, but there are certainly better models to be discovered.
This is but one open question facing deep learning in music signal processing, and
a concerted research effort will likely reveal more.

5.2 Potential Impact

In addition to hopefully advancing the discipline beyond current glass ceilings,
there are several potential benefits to the adoption and research of deep learning
in music informatics. Though learning can discover useful features that were previ-
ously overlooked or not considered, this advantage is amplified for new challenges
and applications that do not offer much guiding intuition. For tasks like artist iden-
tification or automatic mixing, it is difficult to comprehend, much less articulate,
exactly what signal attributes are informative to the task and how an implemen-
tation might robustly capture this information. These problems can, however, be
quantified by an objective function —these songs are by the same artist, or this
is a better mix than that one— which allows for an automated exploration of the
solution space. In turn, such approaches may subsequently provide insight into the
latent features that inform musical judgements, or even lead to deployable systems
that could adapt to the nuances of an individual.

Deep learning also offers practical advantages toward accelerating research.
Rather than trying to compare the instances from one class of functions, evaluation
can take place at the class level. This process has the potential to be significantly
faster than current research approaches because numerical methods attempt to
automatically optimize the same objective function we do by hand. Additionally,
unsupervised learning is able to make use of all recorded sound, and the data-
driven prior that it leverages can be steered by creating specific distributions,
e.g., learn separate priors for rock versus jazz. Finally, music signals provide an
interesting setting in which to further explore the role of time in perceptual AI
systems, and has the potential to influence other time-series domains like video or
motion capture data.
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