PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document
Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

Abstract—

Multilayer Neural Networks trained with the backpropa-
gation algorithm constitute the best example of a successful
Gradient-Based Learning technique. Given an appropriate
network architecture, Gradient-Based Learning algorithms
can be used to synthesize a complex decision surface that can
classify high-dimensional patterns such as handwritten char-
acters, with minimal preprocessing. This paper reviews var-
ious methods applied to handwritten character recognition
and compares them on a standard handwritten digit recog-
nition task. Convolutional Neural Networks, that are specif-
ically designed to deal with the variability of 2D shapes, are
shown to outperform all other techniques.

Real-life document recognition systems are composed
of multiple modules including field extraction, segmenta-
tion, recognition, and language modeling. A new learning
paradigm, called Graph Transformer Networks (GTN), al-
lows such multi-module systems to be trained globally using
Gradient-Based methods so as to minimize an overall per-
formance measure.

Two systems for on-line handwriting recognition are de-
scribed. Experiments demonstrate the advantage of global
training, and the flexibility of Graph Transformer Networks.

A Graph Transformer Network for reading bank check is
also described. It uses Convolutional Neural Network char-
acter recognizers combined with global training techniques
to provides record accuracy on business and personal checks.
It is deployed commercially and reads several million checks
per day.

Keywords— Neural Networks, OCR, Document Recogni-
tion, Machine Learning, Gradient-Based Learning, Convo-
lutional Neural Networks, Graph Transformer Networks, Fi-
nite State Transducers.

NOMENCLATURE

e GT Graph transformer.

o GTN Graph transformer network.

« HMM Hidden Markov model.

+ HOS Heuristic oversegmentation.

¢ K-NN K-nearest neighbor.

¢ NN Neural network.

o OCR Optical character recognition.

o PCA Principal component analysis.

« RBF Radial basis function.

¢ RS-SVM Reduced-set support vector method.
o SDNN Space displacement neural network.
e SVM Support vector method.

o TDNN Time delay neural network.

o V-SVM Virtual support vector method.

The authors are with the Speech and Image Pro-
cessing Services Research Laboratory, AT&T Labs-
Research, 100 Schulz Drive Red Bank, NJ 07701. E-mail:

{yann,leonb,yoshua,haffner}@research.att.com. Yoshua Bengio
is also with the Département d’Informatique et de Recherche
Opérationelle, Université de Montréal, C.P. 6128 Succ. Centre-Ville,
2920 Chemin de la Tour, Montréal, Québec, Canada H3C 3J7.

I. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applied to neural networks, have played
an increasingly important role in the design of pattern
recognition systems. In fact, it could be argued that the
availability of learning techniques has been a crucial fac-
tor in the recent success of pattern recognition applica-
tions such as continuous speech recognition and handwrit-
ing recognition.

The main message of this paper is that better pattern
recognition systems can be built by relying more on auto-
matic learning, and less on hand-designed heuristics. This
is made possible by recent progress in machine learning
and computer technology. Using character recognition as
a case study, we show that hand-crafted feature extrac-
tion can be advantageously replaced by carefully designed
learning machines that operate directly on pixel images.
Using document understanding as a case study, we show
that the traditional way of building recognition systems by
manually integrating individually designed modules can be
replaced by a unified and well-principled design paradigm,
called Graph Transformer Networks, that allows training
all the modules to optimize a global performance criterion.

Since the early days of pattern recognition it has been
known that the variability and richness of natural data,
be it speech, glyphs, or other types of patterns, make it
almost impossible to build an accurate recognition system
entirely by hand. Consequently, most pattern recognition
systems are built using a combination of automatic learn-
ing techniques and hand-crafted algorithms. The usual
method of recognizing individual patterns consists in divid-
ing the system into two main modules shown in figure 1.
The first module, called the feature extractor, transforms
the input patterns so that they can be represented by low-
dimensional vectors or short strings of symbols that (a) can
be easily matched or compared, and (b) are relatively in-
variant with respect to transformations and distortions of
the input patterns that do not change their nature. The
feature extractor contains most of the prior knowledge and
is rather specific to the task. It is also the focus of most of
the design effort, because it is often entirely hand-crafted.
The classifier, on the other hand, is often general-purpose
and trainable. One of the main problems with this ap-
proach is that the recognition accuracy is largely deter-
mined by the ability of the designer to come up with an
appropriate set of features. This turns out to be a daunt-
ing task which, unfortunately, must be redone for each new
problem. A large amount of the pattern recognition liter-
ature is devoted to describing and comparing the relative

PROC. OF THE IEEE, NOVEMBER 1998

Class scores

}

TRAINABLE CLASSIFIER MODULE

!

Feature vector

i

FEATURE EXTRACTION MODULE
1

Raw input

Fig. 1. Traditional pattern recognition is performed with two mod-
ules: a fixed feature extractor, and a trainable classifier.

merits of different feature sets for particular tasks.

Historically, the need for appropriate feature extractors
was due to the fact that the learning techniques used by
the classifiers were limited to low-dimensional spaces with
easily separable classes [1]. A combination of three factors
have changed this vision over the last decade. First, the
availability of low-cost machines with fast arithmetic units
allows to rely more on brute-force “numerical” methods
than on algorithmic refinements. Second, the availability
of large databases for problems with a large market and
wide interest, such as handwriting recognition, has enabled
designers to rely more on real data and less on hand-crafted
feature extraction to build recognition systems. The third
and very important factor is the availability of powerful ma-
chine learning techniques that can handle high-dimensional
inputs and can generate intricate decision functions when
fed with these large data sets. It can be argued that the
recent progress in the accuracy of speech and handwriting
recognition systems can be attributed in large part to an
increased reliance on learning techniques and large training
data sets. As evidence to this fact, a large proportion of
modern commercial OCR systems use some form of multi-
layer Neural Network trained with back-propagation.

In this study, we consider the tasks of handwritten char-
acter recognition (Sections I and II) and compare the per-
formance of several learning techniques on a benchmark
data set for handwritten digit recognition (Section III).
While more automatic learning is beneficial, no learning
technique can succeed without a minimal amount of prior
knowledge about the task. In the case of multi-layer neu-
ral networks, a good way to incorporate knowledge is to
tailor its architecture to the task. Convolutional Neu-
ral Networks [2] introduced in Section II are an exam-
ple of specialized neural network architectures which in-
corporate knowledge about the invariances of 2D shapes
by using local connection patterns, and by imposing con-
straints on the weights. A comparison of several methods
for isolated handwritten digit recognition is presented in
section III. To go from the recognition of individual char-
acters to the recognition of words and sentences in docu-
ments, the idea of combining multiple modules trained to
reduce the overall error is introduced in Section IV. Rec-
ognizing variable-length objects such as handwritten words
using multi-module systems is best done if the modules

manipulate directed graphs. This leads to the concept of
trainable Graph Transformer Network (GTN) also intro-
duced in Section IV. Section V describes the now clas-
sical method of heuristic over-segmentation for recogniz-
ing words or other character strings. Discriminative and
non-discriminative gradient-based techniques for training
a recognizer at the word level without requiring manual
segmentation and labeling are presented in Section VI. Sec-
tion VII presents the promising Space-Displacement Neu-
ral Network approach that eliminates the need for seg-
mentation heuristics by scanning a recognizer at all pos-
sible locations on the input. In section VIII, it is shown
that trainable Graph Transformer Networks can be for-
mulated as multiple generalized transductions, based on a
general graph composition algorithm. The connections be-
tween GTNs and Hidden Markov Models, commonly used
in speech recognition is also treated. Section IX describes
a globally trained GTN system for recognizing handwrit-
ing entered in a pen computer. This problem is known as
“on-line” handwriting recognition, since the machine must
produce immediate feedback as the user writes. The core of
the system is a Convolutional Neural Network. The results
clearly demonstrate the advantages of training a recognizer
at the word level, rather than training it on pre-segmented,
hand-labeled, isolated characters. Section X describes a
complete GTN-based system for reading handwritten and
machine-printed bank checks. The core of the system is the
Convolutional Neural Network called LeNet-5 described in
Section II. This system is in commercial use in the NCR
Corporation line of check recognition systems for the bank-
ing industry. It is reading millions of checks per month in
several banks across the United States.

A. Learning from Data

There are several approaches to automatic machine
learning, but one of the most successful approaches, pop-
ularized in recent years by the neural network community,
can be called “numerical” or gradient-based learning. The
learning machine computes a function Y? = F(ZP, W)
where Z? is the p-th input pattern, and W represents the
collection of adjustable parameters in the system. In a
pattern recognition setting, the output Y? may be inter-
preted as the recognized class label of pattern ZP, or as
scores or probabilities associated with each class. A loss
function E? = D(DP,F(W, ZP)), measures the discrep-
ancy between DP the “correct” or desired output for pat-
tern ZP, and the output produced by the system. The
average loss function Ei.qin (W) is the average of the er-
rors EP over a set of labeled examples called the training
set {(Z1,D'),...(ZF,DF)}. In the simplest setting, the
learning problem consists in finding the value of W that
minimizes Eyqi,(W). In practice, the performance of the
system on a training set is of little interest. The more rel-
evant measure is the error rate of the system in the field,
where it would be used in practice. This performance is
estimated by measuring the accuracy on a set of samples
disjoint from the training set, called the test set. Much
theoretical and experimental work [3], [4], [5] has shown

PROC. OF THE IEEE, NOVEMBER 1998

that the gap between the expected error rate on the test
set Fi.s¢ and the error rate on the training set Eipqin de-
creases with the number of training samples approximately
as

Etest - Etrain = k(h/P)a (]‘)

where P is the number of training samples, h is a measure of
“effective capacity” or complexity of the machine [6], [7],
is a number between 0.5 and 1.0, and k is a constant. This
gap always decreases when the number of training samples
increases. Furthermore, as the capacity h increases, Ei,qin
decreases. Therefore, when increasing the capacity h, there
is a trade-off between the decrease of Ej,..;, and the in-
crease of the gap, with an optimal value of the capacity h
that achieves the lowest generalization error Fics. Most
learning algorithms attempt to minimize FEi,.,;, as well as
some estimate of the gap. A formal version of this is called
structural risk minimization [6], [7], and is based on defin-
ing a sequence of learning machines of increasing capacity,
corresponding to a sequence of subsets of the parameter
space such that each subset is a superset of the previous
subset. In practical terms, Structural Risk Minimization
is implemented by minimizing Etpqin + SH (W), where the
function H(W) is called a regularization function, and 3 is
a constant. H(W) is chosen such that it takes large val-
ues on parameters W that belong to high-capacity subsets
of the parameter space. Minimizing H(W) in effect lim-
its the capacity of the accessible subset of the parameter
space, thereby controlling the tradeoff between minimiz-
ing the training error and minimizing the expected gap
between the training error and test error.

B. Gradient-Based Learning

The general problem of minimizing a function with re-
spect to a set of parameters is at the root of many issues in
computer science. Gradient-Based Learning draws on the
fact that it is generally much easier to minimize a reason-
ably smooth, continuous function than a discrete (combi-
natorial) function. The loss function can be minimized by
estimating the impact of small variations of the parame-
ter values on the loss function. This is measured by the
gradient of the loss function with respect to the param-
eters. Efficient learning algorithms can be devised when
the gradient vector can be computed analytically (as op-
posed to numerically through perturbations). This is the
basis of numerous gradient-based learning algorithms with
continuous-valued parameters. In the procedures described
in this article, the set of parameters W is a real-valued vec-
tor, with respect to which E(W) is continuous, as well as
differentiable almost everywhere. The simplest minimiza-
tion procedure in such a setting is the gradient descent
algorithm where W is iteratively adjusted as follows:

SE(W)
W (2)

Wk = kal — €

In the simplest case, € is a scalar constant. More sophisti-
cated procedures use variable €, or substitute it for a diag-
onal matrix, or substitute it for an estimate of the inverse

Hessian matrix as in Newton or Quasi-Newton methods.
The Conjugate Gradient method [8] can also be used.
However, Appendix B shows that despite many claims
to the contrary in the literature, the usefulness of these
second-order methods to large learning machines is very
limited.

A popular minimization procedure is the stochastic gra-
dient algorithm, also called the on-line update. It consists
in updating the parameter vector using a noisy, or approx-
imated, version of the average gradient. In the most com-
mon instance of it, W is updated on the basis of a single
sample:

Pk
8E6 M(/W) 3)
With this procedure the parameter vector fluctuates
around an average trajectory, but usually converges consid-
erably faster than regular gradient descent and second or-
der methods on large training sets with redundant samples
(such as those encountered in speech or character recogni-
tion). The reasons for this are explained in Appendix B.
The properties of such algorithms applied to learning have
been studied theoretically since the 1960’s [9], [10], [11],
but practical successes for non-trivial tasks did not occur
until the mid eighties.

Wk = Wk—l — €

C. Gradient Back-Propagation

Gradient-Based Learning procedures have been used
since the late 1950’s, but they were mostly limited to lin-
ear systems [1]. The surprising usefulness of such sim-
ple gradient descent techniques for complex machine learn-
ing tasks was not widely realized until the following three
events occurred. The first event was the realization that,
despite early warnings to the contrary [12], the presence
of local minima in the loss function does not seem to
be a major problem in practice. This became apparent
when it was noticed that local minima did not seem to
be a major impediment to the success of early non-linear
gradient-based Learning techniques such as Boltzmann ma-
chines [13], [14]. The second event was the popularization
by Rumelhart, Hinton and Williams [15] and others of a
simple and efficient procedure, the back-propagation al-
gorithm, to compute the gradient in a non-linear system
composed of several layers of processing. The third event
was the demonstration that the back-propagation proce-
dure applied to multi-layer neural networks with sigmoidal
units can solve complicated learning tasks. The basic idea
of back-propagation is that gradients can be computed effi-
ciently by propagation from the output to the input. This
idea was described in the control theory literature of the
early sixties [16], but its application to machine learning
was not generally realized then. Interestingly, the early
derivations of back-propagation in the context of neural
network learning did not use gradients, but “virtual tar-
gets” for units in intermediate layers [17], [18], or minimal
disturbance arguments [19]. The Lagrange formalism used
in the control theory literature provides perhaps the best
rigorous method for deriving back-propagation [20], and for
deriving generalizations of back-propagation to recurrent

PROC. OF THE IEEE, NOVEMBER 1998

networks [21], and networks of heterogeneous modules [22].
A simple derivation for generic multi-layer systems is given
in Section I-E.

The fact that local minima do not seem to be a problem
for multi-layer neural networks is somewhat of a theoretical
mystery. It is conjectured that if the network is oversized
for the task (as is usually the case in practice), the presence
of “extra dimensions” in parameter space reduces the risk
of unattainable regions. Back-propagation is by far the
most widely used neural-network learning algorithm, and
probably the most widely used learning algorithm of any
form.

D. Learning in Real Handwriting Recognition Systems

Isolated handwritten character recognition has been ex-
tensively studied in the literature (see [23], [24] for reviews),
and was one of the early successful applications of neural
networks [25]. Comparative experiments on recognition of
individual handwritten digits are reported in Section III.
They show that neural networks trained with Gradient-
Based Learning perform better than all other methods
tested here on the same data. The best neural networks,
called Convolutional Networks, are designed to learn to
extract relevant features directly from pixel images (see
Section II).

One of the most difficult problems in handwriting recog-
nition, however, is not only to recognize individual charac-
ters, but also to separate out characters from their neigh-
bors within the word or sentence, a process known as seg-
mentation. The technique for doing this that has become
the “standard” is called Heuristic Over-Segmentation. It
consists in generating a large number of potential cuts
between characters using heuristic image processing tech-
niques, and subsequently selecting the best combination of
cuts based on scores given for each candidate character by
the recognizer. In such a model, the accuracy of the sys-
tem depends upon the quality of the cuts generated by the
heuristics, and on the ability of the recognizer to distin-
guish correctly segmented characters from pieces of char-
acters, multiple characters, or otherwise incorrectly seg-
mented characters. Training a recognizer to perform this
task poses a major challenge because of the difficulty in cre-
ating a labeled database of incorrectly segmented charac-
ters. The simplest solution consists in running the images
of character strings through the segmenter, and then man-
ually labeling all the character hypotheses. Unfortunately,
not only is this an extremely tedious and costly task, it is
also difficult to do the labeling consistently. For example,
should the right half of a cut up 4 be labeled as a 1 or as
a non-character? should the right half of a cut up 8 be
labeled as a 37

The first solution, described in Section V consists in
training the system at the level of whole strings of char-
acters, rather than at the character level. The notion of
Gradient-Based Learning can be used for this purpose. The
system is trained to minimize an overall loss function which
measures the probability of an erroneous answer. Section V
explores various ways to ensure that the loss function is dif-

ferentiable, and therefore lends itself to the use of Gradient-
Based Learning methods. Section V introduces the use of
directed acyclic graphs whose arcs carry numerical infor-
mation as a way to represent the alternative hypotheses,
and introduces the idea of GTN.

The second solution described in Section VII is to elim-
inate segmentation altogether. The idea is to sweep the
recognizer over every possible location on the input image,
and to rely on the “character spotting” property of the rec-
ognizer, i.e. its ability to correctly recognize a well-centered
character in its input field, even in the presence of other
characters besides it, while rejecting images containing no
centered characters [26], [27]. The sequence of recognizer
outputs obtained by sweeping the recognizer over the in-
put is then fed to a Graph Transformer Network that takes
linguistic constraints into account and finally extracts the
most likely interpretation. This GTN is somewhat similar
to Hidden Markov Models (HMM), which makes the ap-
proach reminiscent of the classical speech recognition [28],
[29]. While this technique would be quite expensive in
the general case, the use of Convolutional Neural Networks
makes it particularly attractive because it allows significant
savings in computational cost.

E. Globally Trainable Systems

As stated earlier, most practical pattern recognition sys-
tems are composed of multiple modules. For example, a
document recognition system is composed of a field locator,
which extracts regions of interest, a field segmenter, which
cuts the input image into images of candidate characters, a
recognizer, which classifies and scores each candidate char-
acter, and a contextual post-processor, generally based on
a stochastic grammar, which selects the best grammatically
correct answer from the hypotheses generated by the recog-
nizer. In most cases, the information carried from module
to module is best represented as graphs with numerical in-
formation attached to the arcs. For example, the output
of the recognizer module can be represented as an acyclic
graph where each arc contains the label and the score of
a candidate character, and where each path represent a
alternative interpretation of the input string. Typically,
each module is manually optimized, or sometimes trained,
outside of its context. For example, the character recog-
nizer would be trained on labeled images of pre-segmented
characters. Then the complete system is assembled, and
a subset of the parameters of the modules is manually ad-
justed to maximize the overall performance. This last step
is extremely tedious, time-consuming, and almost certainly
suboptimal.

A better alternative would be to somehow train the en-
tire system so as to minimize a global error measure such as
the probability of character misclassifications at the docu-
ment level. Ideally, we would want to find a good minimum
of this global loss function with respect to all the param-
eters in the system. If the loss function E measuring the
performance can be made differentiable with respect to the
system’s tunable parameters W, we can find a local min-
imum of E using Gradient-Based Learning. However, at

PROC. OF THE IEEE, NOVEMBER 1998

first glance, it appears that the sheer size and complexity
of the system would make this intractable.

To ensure that the global loss function EP(ZP, W) is dif-
ferentiable, the overall system is built as a feed-forward net-
work of differentiable modules. The function implemented
by each module must be continuous and differentiable al-
most everywhere with respect to the internal parameters of
the module (e.g. the weights of a Neural Net character rec-
ognizer in the case of a character recognition module), and
with respect to the module’s inputs. If this is the case, a
simple generalization of the well-known back-propagation
procedure can be used to efficiently compute the gradients
of the loss function with respect to all the parameters in
the system [22]. For example, let us consider a system
built as a cascade of modules, each of which implements a
function X,, = F,,(Wp, X,—1), where X,, is a vector rep-
resenting the output of the module, W, is the vector of
tunable parameters in the module (a subset of W), and
Xp—1 is the module’s input vector (as well as the previous
module’s output vector). The input X to the first module
is the input pattern ZP. If the partial derivative of E? with
respect to X, is known, then the partial derivatives of EP
with respect to W,, and X,,_; can be computed using the
backward recurrence

OEP OF OEP
ow, = aw!"mXax,
OEP OF OEP
0%, — ox\'m¥npx, @

where g_vI;/(Wm Xp—1) is the Jacobian of F with respect to
W evaluated at the point (W,, X,,_1), and g—f;(Wn, Xn_1)
is the Jacobian of F' with respect to X. The Jacobian of
a vector function is a matrix containing the partial deriva-
tives of all the outputs with respect to all the inputs.
The first equation computes some terms of the gradient
of EP(W), while the second equation generates a back-
ward recurrence, as in the well-known back-propagation
procedure for neural networks. We can average the gradi-
ents over the training patterns to obtain the full gradient.
It is interesting to note that in many instances there is
no need to explicitly compute the Jacobian matrix. The
above formula uses the product of the Jacobian with a vec-
tor of partial derivatives, and it is often easier to compute
this product directly without computing the Jacobian be-
forehand. In By analogy with ordinary multi-layer neural
networks, all but the last module are called hidden layers
because their outputs are not observable from the outside.
more complex situations than the simple cascade of mod-
ules described above, the partial derivative notation be-
comes somewhat ambiguous and awkward. A completely
rigorous derivation in more general cases can be done using
Lagrange functions [20], [21], [22].

Traditional multi-layer neural networks are a special case
of the above where the state information X, is represented
with fixed-sized vectors, and where the modules are al-
ternated layers of matrix multiplications (the weights) and
component-wise sigmoid functions (the neurons). However,
as stated earlier, the state information in complex recogni-

tion system is best represented by graphs with numerical
information attached to the arcs. In this case, each module,
called a Graph Transformer, takes one or more graphs as
input, and produces a graph as output. Networks of such
modules are called Graph Transformer Networks (GTN).
Sections IV, VI and VIII develop the concept of GTNs,
and show that Gradient-Based Learning can be used to
train all the parameters in all the modules so as to mini-
mize a global loss function. It may seem paradoxical that
gradients can be computed when the state information is
represented by essentially discrete objects such as graphs,
but that difficulty can be circumvented, as shown later.

II. CoNVOLUTIONAL NEURAL NETWORKS FOR
ISOLATED CHARACTER RECOGNITION

The ability of multi-layer networks trained with gradi-
ent descent to learn complex, high-dimensional, non-linear
mappings from large collections of examples makes them
obvious candidates for image recognition tasks. In the tra-
ditional model of pattern recognition, a hand-designed fea-
ture extractor gathers relevant information from the input
and eliminates irrelevant variabilities. A trainable classifier
then categorizes the resulting feature vectors into classes.
In this scheme, standard, fully-connected multi-layer net-
works can be used as classifiers. A potentially more inter-
esting scheme is to rely on as much as possible on learning
in the feature extractor itself. In the case of character
recognition, a network could be fed with almost raw in-
puts (e.g. size-normalized images). While this can be done
with an ordinary fully connected feed-forward network with
some success for tasks such as character recognition, there
are problems.

Firstly, typical images are large, often with several hun-
dred variables (pixels). A fully-connected first layer with,
say one hundred hidden units in the first layer, would al-
ready contain several tens of thousands of weights. Such
a large number of parameters increases the capacity of the
system and therefore requires a larger training set. In ad-
dition, the memory requirement to store so many weights
may rule out certain hardware implementations. But, the
main deficiency of unstructured nets for image or speech
applications is that they have no built-in invariance with
respect to translations, or local distortions of the inputs.
Before being sent to the fixed-size input layer of a neural
net, character images, or other 2D or 1D signals, must be
approximately size-normalized and centered in the input
field. Unfortunately, no such preprocessing can be perfect:
handwriting is often normalized at the word level, which
can cause size, slant, and position variations for individual
characters. This, combined with variability in writing style,
will cause variations in the position of distinctive features
in input objects. In principle, a fully-connected network of
sufficient size could learn to produce outputs that are in-
variant with respect to such variations. However, learning
such a task would probably result in multiple units with
similar weight patterns positioned at various locations in
the input so as to detect distinctive features wherever they
appear on the input. Learning these weight configurations

PROC. OF THE IEEE, NOVEMBER 1998

requires a very large number of training instances to cover
the space of possible variations. In convolutional networks,
described below, shift invariance is automatically obtained
by forcing the replication of weight configurations across
space.

Secondly, a deficiency of fully-connected architectures is
that the topology of the input is entirely ignored. The in-
put variables can be presented in any (fixed) order without
affecting the outcome of the training. On the contrary,
images (or time-frequency representations of speech) have
a strong 2D local structure: variables (or pixels) that are
spatially or temporally nearby are highly correlated. Local
correlations are the reasons for the well-known advantages
of extracting and combining local features before recogniz-
ing spatial or temporal objects, because configurations of
neighboring variables can be classified into a small number
of categories (e.g. edges, corners...). Convolutional Net-
works force the extraction of local features by restricting
the receptive fields of hidden units to be local.

A. Convolutional Networks

Convolutional Networks combine three architectural
ideas to ensure some degree of shift, scale, and distor-
tion invariance: local receptive fields, shared weights (or
weight replication), and spatial or temporal sub-sampling.
A typical convolutional network for recognizing characters,
dubbed LeNet-5, is shown in figure 2. The input plane
receives images of characters that are approximately size-
normalized and centered. Each unit in a layer receives in-
puts from a set of units located in a small neighborhood
in the previous layer. The idea of connecting units to local
receptive fields on the input goes back to the Perceptron in
the early 60s, and was almost simultaneous with Hubel and
Wiesel’s discovery of locally-sensitive, orientation-selective
neurons in the cat’s visual system [30]. Local connections
have been used many times in neural models of visual learn-
ing [31], [32], [18], [33], [34], [2]. With local receptive
fields, neurons can extract elementary visual features such
as oriented edges, end-points, corners (or similar features in
other signals such as speech spectrograms). These features
are then combined by the subsequent layers in order to de-
tect higher-order features. As stated earlier, distortions or
shifts of the input can cause the position of salient features
to vary. In addition, elementary feature detectors that are
useful on one part of the image are likely to be useful across
the entire image. This knowledge can be applied by forcing
a set of units, whose receptive fields are located at different
places on the image, to have identical weight vectors [32],
[15], [34]. Units in a layer are organized in planes within
which all the units share the same set of weights. The set
of outputs of the units in such a plane is called a feature
map. Units in a feature map are all constrained to per-
form the same operation on different parts of the image.
A complete convolutional layer is composed of several fea-
ture maps (with different weight vectors), so that multiple
features can be extracted at each location. A concrete ex-
ample of this is the first layer of LeNet-5 shown in Figure 2.
Units in the first hidden layer of LeNet-5 are organized in 6

planes, each of which is a feature map. A unit in a feature
map has 25 inputs connected to a 5 by 5 area in the input,
called the receptive field of the unit. Each unit has 25 in-
puts, and therefore 25 trainable coefficients plus a trainable
bias. The receptive fields of contiguous units in a feature
map are centered on correspondingly contiguous units in
the previous layer. Therefore receptive fields of neighbor-
ing units overlap. For example, in the first hidden layer
of LeNet-5, the receptive fields of horizontally contiguous
units overlap by 4 columns and 5 rows. As stated earlier,
all the units in a feature map share the same set of 25
weights and the same bias so they detect the same feature
at all possible locations on the input. The other feature
maps in the layer use different sets of weights and biases,
thereby extracting different types of local features. In the
case of LeNet-5, at each input location six different types
of features are extracted by six units in identical locations
in the six feature maps. A sequential implementation of
a feature map would scan the input image with a single
unit that has a local receptive field, and store the states
of this unit at corresponding locations in the feature map.
This operation is equivalent to a convolution, followed by
an additive bias and squashing function, hence the name
convolutional network. The kernel of the convolution is the
set of connection weights used by the units in the feature
map. An interesting property of convolutional layers is that
if the input image is shifted, the feature map output will
be shifted by the same amount, but will be left unchanged
otherwise. This property is at the basis of the robustness
of convolutional networks to shifts and distortions of the
input.

Once a feature has been detected, its exact location
becomes less important. Only its approximate position
relative to other features is relevant. For example, once
we know that the input image contains the endpoint of a
roughly horizontal segment in the upper left area, a corner
in the upper right area, and the endpoint of a roughly ver-
tical segment in the lower portion of the image, we can tell
the input image is a 7. Not only is the precise position of
each of those features irrelevant for identifying the pattern,
it is potentially harmful because the positions are likely to
vary for different instances of the character. A simple way
to reduce the precision with which the position of distinc-
tive features are encoded in a feature map is to reduce the
spatial resolution of the feature map. This can be achieved
with a so-called sub-sampling layers which performs a local
averaging and a sub-sampling, reducing the resolution of
the feature map, and reducing the sensitivity of the output
to shifts and distortions. The second hidden layer of LeNet-
5 is a sub-sampling layer. This layer comprises six feature
maps, one for each feature map in the previous layer. The
receptive field of each unit is a 2 by 2 area in the previous
layer’s corresponding feature map. Each unit computes the
average of its four inputs, multiplies it by a trainable coef-
ficient, adds a trainable bias, and passes the result through
a sigmoid function. Contiguous units have non-overlapping
contiguous receptive fields. Consequently, a sub-sampling
layer feature map has half the number of rows and columns

PROC. OF THE IEEE, NOVEMBER 1998

C3: f. maps 16@10x10
C1: feature maps

INPUT 6@28x28

32x32 S2: f. maps

6@14x14

Convolutions Subsampling

Convolutions

S4: f. maps 16@5x5

‘ Full conAection ‘ Gaussian connections
Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units

whose weights are constrained to be identical.

as the feature maps in the previous layer. The trainable
coefficient and bias control the effect of the sigmoid non-
linearity. If the coefficient is small, then the unit operates
in a quasi-linear mode, and the sub-sampling layer merely
blurs the input. If the coefficient is large, sub-sampling
units can be seen as performing a “noisy OR” or a “noisy
AND” function depending on the value of the bias. Succes-
sive layers of convolutions and sub-sampling are typically
alternated, resulting in a “bi-pyramid”: at each layer, the
number of feature maps is increased as the spatial resolu-
tion is decreased. Each unit in the third hidden layer in fig-
ure 2 may have input connections from several feature maps
in the previous layer. The convolution/sub-sampling com-
bination, inspired by Hubel and Wiesel’s notions of “sim-
ple” and “complex” cells, was implemented in Fukushima’s
Neocognitron [32], though no globally supervised learning
procedure such as back-propagation was available then. A
large degree of invariance to geometric transformations of
the input can be achieved with this progressive reduction
of spatial resolution compensated by a progressive increase
of the richness of the representation (the number of feature
maps).

Since all the weights are learned with back-propagation,
convolutional networks can be seen as synthesizing their
own feature extractor. The weight sharing technique has
the interesting side effect of reducing the number of free
parameters, thereby reducing the “capacity” of the ma-
chine and reducing the gap between test error and training
error [34]. The network in figure 2 contains 340,908 con-
nections, but only 60,000 trainable free parameters because
of the weight sharing.

Fixed-size Convolutional Networks have been applied
to many applications, among other handwriting recogni-
tion [35], [36], machine-printed character recognition [37],
on-line handwriting recognition [38], and face recogni-
tion [39]. Fixed-size convolutional networks that share
weights along a single temporal dimension are known as
Time-Delay Neural Networks (TDNNs). TDNNs have been
used in phoneme recognition (without sub-sampling) [40],
[41], spoken word recognition (with sub-sampling) [42],
[43], on-line recognition of isolated handwritten charac-
ters [44], and signature verification [45].

B. LeNet-5

This section describes in more detail the architecture of
LeNet-5, the Convolutional Neural Network used in the
experiments. LeNet-5 comprises 7 layers, not counting the
input, all of which contain trainable parameters (weights).
The input is a 32x32 pixel image. This is significantly larger
than the largest character in the database (at most 20x20
pixels centered in a 28x28 field). The reason is that it is
desirable that potential distinctive features such as stroke
end-points or corner can appear in the center of the recep-
tive field of the highest-level feature detectors. In LeNet-5
the set of centers of the receptive fields of the last convolu-
tional layer (C3, see below) form a 20x20 area in the center
of the 32x32 input. The values of the input pixels are nor-
malized so that the background level (white) corresponds
to a value of -0.1 and the foreground (black) corresponds
to 1.175. This makes the mean input roughly 0, and the
variance roughly 1 which accelerates learning [46].

In the following, convolutional layers are labeled Cx, sub-
sampling layers are labeled Sx, and fully-connected layers
are labeled Fx, where x is the layer index.

Layer C1 is a convolutional layer with 6 feature maps.
Each unit in each feature map is connected to a 5x5 neigh-
borhood in the input. The size of the feature maps is 28x28
which prevents connection from the input from falling off
the boundary. C1 contains 156 trainable parameters, and
122,304 connections.

Layer S2 is a sub-sampling layer with 6 feature maps of
size 14x14. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in C1.
The four inputs to a unit in S2 are added, then multiplied
by a trainable coefficient, and added to a trainable bias.
The result is passed through a sigmoidal function. The
2x2 receptive fields are non-overlapping, therefore feature
maps in S2 have half the number of rows and column as
feature maps in C1. Layer S2 has 12 trainable parameters
and 5,880 connections.

Layer C3 is a convolutional layer with 16 feature maps.
Fach unit in each feature map is connected to several 5x5
neighborhoods at identical locations in a subset of S2’s
feature maps. Table I shows the set of S2 feature maps

PROC. OF THE IEEE, NOVEMBER 1998

01 23456 7 8 9 101112131415
0X X X X X XXX X X
11X X X X X X X X X X
21X X X X X X X X X X
3 X X X X XXX X X X
4 X X X X X X X X X X
) X X X XX XX X X X

TABLE 1

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

combined by each C3 feature map. Why not connect ev-
ery S2 feature map to every C3 feature map? The rea-
son is twofold. First, a non-complete connection scheme
keeps the number of connections within reasonable bounds.
More importantly, it forces a break of symmetry in the net-
work. Different feature maps are forced to extract different
(hopefully complementary) features because they get dif-
ferent sets of inputs. The rationale behind the connection
scheme in table I is the following. The first six C3 feature
maps take inputs from every contiguous subsets of three
feature maps in S2. The next six take input from every
contiguous subset of four. The next three take input from
some discontinuous subsets of four. Finally the last one
takes input from all S2 feature maps. Layer C3 has 1,516
trainable parameters and 151,600 connections.

Layer S4 is a sub-sampling layer with 16 feature maps of
size 5x5. Each unit in each feature map is connected to a
2x2 neighborhood in the corresponding feature map in C3,
in a similar way as C1 and S2. Layer S4 has 32 trainable
parameters and 2,000 connections.

Layer C5 is a convolutional layer with 120 feature maps.
Each unit is connected to a 5x5 neighborhood on all 16
of S4’s feature maps. Here, because the size of S4 is also
5x5, the size of Cb5’s feature maps is 1x1: this amounts
to a full connection between S4 and C5. C5 is labeled
as a convolutional layer, instead of a fully-connected layer,
because if LeNet-5 input were made bigger with everything
else kept constant, the feature map dimension would be
larger than 1x1. This process of dynamically increasing the
size of a convolutional network is described in the section
Section VII. Layer C5 has 48,120 trainable connections.

Layer F6, contains 84 units (the reason for this number
comes from the design of the output layer, explained be-
low) and is fully connected to C5. It has 10,164 trainable
parameters.

As in classical neural networks, units in layers up to F6
compute a dot product between their input vector and their
weight vector, to which a bias is added. This weighted sum,
denoted a; for unit 4, is then passed through a sigmoid
squashing function to produce the state of unit ¢, denoted
by T

z; = f(a;) (5)
The squashing function is a scaled hyperbolic tangent:
f(a) = Atanh(Sa) (6)

where A is the amplitude of the function and S determines
its slope at the origin. The function f is odd, with horizon-
tal asymptotes at +A4 and —A. The constant A is chosen
to be 1.7159. The rationale for this choice of a squashing
function is given in Appendix A.

Finally, the output layer is composed of Euclidean Radial
Basis Function units (RBF), one for each class, with 84
inputs each. The outputs of each RBF unit y; is computed

as follows:

yi= (¢ —wij)”. (7

J

In other words, each output RBF unit computes the Eu-
clidean distance between its input vector and its parameter
vector. The further away is the input from the parameter
vector, the larger is the RBF output. The output of a
particular RBF can be interpreted as a penalty term mea-
suring the fit between the input pattern and a model of the
class associated with the RBF. In probabilistic terms, the
RBF output can be interpreted as the unnormalized nega-
tive log-likelihood of a Gaussian distribution in the space
of configurations of layer F6. Given an input pattern, the
loss function should be designed so as to get the configu-
ration of F6 as close as possible to the parameter vector
of the RBF that corresponds to the pattern’s desired cl