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I HIS ARTICLE DESCRIBES TWO NEW METHODS
for achieving handwritten digit recogmition. The task of
handwritten digit recognition was chosen for investigation not
only because 1t has considerable practical interest, but because
1t 1s relatively well-defined and is sufficiently complex to con-
suitute a meaningful test of connectionist methods.

Simple classification techniques applied to pixel images do
not provide high recognition rates because systems based on
these techniques contain little prior knowledge about the to-
pology of the task. Knowledge can be built into the system by
changing the representation of a digit from a pixel image 10 a
predefined feature description. The first of our methods imple-
ments this 1dea by performing feature extraction with a neural
network chip The feature representation can then be used by a
relauvely simple classifier. consisting of a two-layer network
trained with back-propagation.

Finding the proper feature representation for a particular
problem 1sa very complex task. To circumvent this, our second
method incorporates sufficient knowledge of the task topology
into the classifier so that 1t automatically generates an appro-
priate change of representation. This is done by using an adap-
tive network that has constraints on 1ts architecture that cap-
ture the two-dimensional topology of the data. The network is
trained on pixel images directly using the back-propagation al-
gorithm

The first section describes the database and shows some ex-
amples The following section discusses the first method based
on a neural network chip that performs line-thinning and fea-
ture extraction using local template matching. The secuon
after that discusses the second method, which 1s implemented
on a digital signal processor. and makes extensive use of con-
strained automatic learming Some concluding remarks are
made 1n the final section.

The Database

A recurring problem 1n evaluating character recognition
systems 1s the lack of a reliable measure of task difficulty. In
particular. for digit recognition the performance of the system
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1s highly test-set A system may ly recog-
nize 99% of test data consisting of well-formed digits but score
only 80% when confronted with the poorly-formed digits that
are both routinely produced and easily recognized by people.
We choose to perform our experiments on a rather difficult
data set: 1solated handwritten digits that were taken from pos-
1al zip codes. The z1p code 1mages were collected by the U.S.
Postal Service from envelopes that passed through the Buffalo,
NY Post Office. A postal service contractor converted the orig-
1nal 21p code images to binary images, and segmented the dig-
1ts: that is, disaggregated them into five disjointed images. one
for each digit of the zip code. The resulting database consists of
9,298 binary images of isolated digits, 7.291 of which are used
as the training set, while the remaiming 2,007 are used as the
test set. Most of the images are fairly clean; however. a signifi-
cant fraction are very blotchy or incomplete. The latter defect
1s quite common among “5s,” in which the top horizontal
stroke 1s often missing. It should be stressed that such mustakes
in the segmentation are inevitable. High-level. contextual in-
formation 1s needed 10 perform a perfectly reliable segmenta-
tion on connected character sequences, and no such informa-
uion 1s available at the early preprocessing stage without any
feedback from the recognition stages.

In our laboratory, we performed some additional
preprocessing to normalize the shape and the skew (ult) of the
digits (2] [9]. We scaled the bit maps to fit into eithera 32 x 32
or 16 x 16 pixel window. Typical scaled and “de-skewed™ ex-
amples taken from this data set are shown in Figure |. As can
be seen, many of the digits are of poor quality.

Digit Recognition Using a Neural
Network Template Matching Chip

For our first attack on this problem (3], extensive
preprocessing was done beyond the simple scaling and de-
skewing described above. The object here was to change the
representation of the digit from a bit map to a feature map with
the expectation that the classes will be more ughtly clustered 1n
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plates exceeds a preset lhreshold the center pixel 1s deleted.
of some of the used for are

shown in Figure 2:a) - d) shows typical templates used for thin-
ning in the upper left of each box. €) shows a scaled binarized
image. and f) shows the result after skele\omzanon using one
pass with 20 | Black 1s
and white 1s don't care. The pixels deleted by cach lcmplalc are
shown in grey on the large image in each box. These templates
were chosen 1n a systematic, but ad hoc, manner.

1t should be noted that. although skeletonization 1s per-
formed in a raster scan fashion. it can be performed entirely in
parallel with a sufficient amount of special-purpose hard-
ware

Feature Extraction

In the feature extraction process. the skeletonized image 1s
raster scanned with a 7 x 7 pixel window. The templates for
feature extraction. which are loaded on the chip after
skeletonization 1s complete. were inspired by results from ex-
perimental neurobiology (5], but their precise shapes were
fine-tuned by hand (3], in part 10 conform to the constraints
imposed by the chip The templates check for the presence of
oriented lines. oriented line end-stops. and arcs. Examples of
some of the 49 templates are shown 1n Figure 3
Whenever a feature template match exceeds the preset

a | (for the feature) 1s set 1n the map.
Thus. there 1s a feature map for every template. Some of the
templates search for the same feature. but on a different size
scale The maps for such features are logically “*OR"ed together
after the scan 1s completed.

The feature extraction process generates 49 32 x 32 maps
from the 32 x 32 normalized 1mage. Some of these maps are
combined by logical operations to produce 18 32 x 32 feature
maps To reduce the amount of data. each feature map 1s
coarse-blocked intoa 3 x 5 array by simply *OR"ing neighbor-
ing bits 1n each feature map. The 18 3 x 5 feature maps make
up a 270-bit vector which 1s used for digit classification. The
coarse blocking also has the effect of building a fair amount of
translation and rotation invanance into the processing

Classification and Results of
Chip-Based Systems

The back-propagation algorithm was used to train the final
classification network. The network had 270 input units, corre-
sponding to the coarse-blocked feature maps; 40 hidden units,
fully connected to the input layer; and 10 output units, one for
each digut class. fully connected 10 the hidden units Thus.
there were about 11,000 weights for the classtfication network
The raw generalization performance on the 2,007 test exam-

O

Fig 3 Feature extraction process

ples was around 94% and was obtained after about 15 learming
passes through the training set.

In a realistic apphcauon the user 1s less interested in the
raw error rate than in the number of rejections necessary 1o
reach a given level of accuracy. In our case. we measured the
percentage of test patterns that must be rejected in order to get
17 error rate on the remaining test patterns.

Our rejection criterion was based on three conditions. the
activity level of the most active output unit should be larger
than a given threshold. 1 ; the activity level of the second most
active unit should be smaller than a given threshold. t, and fi-
nally. the difference between the activity levels of these two
umits should be larger than a given threshold. t4

In a realistic application, the user is
less interested in the raw error rate
than in the number of rejections
necessary to reach a given level of
accuracy.

It should be emphasized, however. that the rejection thresh-
olds were obtained using performance measures on the test set.
Thus. we measure performance by setting output unit activa-
ton criteria. which must be attained in order 1o accept a classi-
fication. For activations below this level we reject the digit as
unclassifiable. We find that to obtain a misclassification rate
no higher than 1% we must reject 13% of the digits. We expect
that a patient human could achieve the same error rate by re-
Jecting about 5% of the digits.

Time Budget

As stated earlier. the chip has enough computing power to
evaluate all the templates at one window location in one micro-
second Thus. a few mulliseconds should be required for the

and feature across the whole 32 x
32 image. Actual processing imes were about two orders of
magnitude slower. Although the chip-host interface costs an
order of h the in the proc-
ess 1s the speed at whnch the host computer formats the pixel-
window data to be sent to the chip. The bottleneck and the
put/output problem could be eliminated if the chip were in-

into a spi l-purpose image ing system.

Degrees of Freedom in the Network

We can interpret the combination of skeletonization. fea-
ture extraction. and classification as one huge feed-forward
network. In that case. about 2 muillion connections must be
evaluated to perform the three skeletonization passes and an
additional 2 mullion are required for the feature extraction
Thus. 99 5% of the connection evaluations involve a “hand
crafted” change of representation from bit maps to feature
maps. the final classification requires only 0 5% of the connec-
uons. We note, however. that relatively few bits are required to
specify the weights for the skeletonization and feature extrac-
uon There are 25 skeletonization kernels of 25 coefficients
each Each coefficient has one of three values (= 1.6 buts).
Most of the kernels are rotations or reflections of other kernels.
Furthermore. most of the kernels have symmetry axes. We esti-
mate that once these geometric constratnts are imposed, about
150 bits are required to specify the skeletonization kernels, and
by similar arguments. about 400 bits are required to specify the
feature extraction kernels. Thus. the network of 4 mullion con-
nections can be parametrized by only several hundred bits
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These arguments suggest that by imposing sufficient con-
straints on the weights in a multilayered network. high recogni-
tion accuracy might be achieved by learned convolution ker-
nels Such a network 1s discussed in the following sections.

Digit Recognition Using Constrained
Automatic Learning

The experiments described above suggest that a large net-
work 1s probably needed to perform accurate digit recognition
If we were 1o design a large unconstrained network, it is very
unlikely that 1t could be trained on a database even as large as
ours with any hope of achieving good generalizing ability (i.e .
good scores on the test data). In fact. we only expect the net-
work to perform well if we include some of our knowledge
about the problem 1nto the network design

Classical work in visual pattern
recognition has demonstrated the
advantage of extracting local features
and combining them to form
higher-order features.

Classical work in visual pattern recogninion has demon-
strated the advantage of extracting local features and combin-
ing them to form higher-order features. Such knowledge can
easily be built into the network by forcing the hidden units to
combine only local sources of mfon-nauon Le Cun (7] has
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Fig 4 Network architecture

shape appears in an 1mage, while the exact position where that
feature appears need not be determined with equally high pre-
cision. It 1s also known that the sort of features that are impor-
tant at one place in the image are likely to be important in other
places.

Therefore, corresponding connections on each umt in a
given feature map are constrained 10 have the same weights. In
other words. all of the 64 units in H1.1 use the same set of 25
weights. This 1s taken i1nto account in the appropriate back-
propagation fon-nula Each unit performs the same operation

shown how to incorporate prior
the network weights during back-| propagauon learning. We
know that the digit task 1sa geo-

on cor! parts of the image. The function performed
by a feature map can thus be interpreted as a generalized
'witha 5 x 5 kernel.

metric problem. so we should incorporate this knowledge into
the network design One way this can be accomplished is by
forcing the early ayers in the network to perform two-
dimensional convotutions over the image. Following this ap-
proach. we designed the network shown in Figure 4. This meth-
od 1s independent of the one in the previous section.

Architecture

The input to the network 1sa 16 x 16 gray-scale image that
1s formed by normalizing the raw image The image 1s gray-
scale rather than binary since a variable number of pixels in the
raw image can fall into a given pixel in the normahized image. It
should be emphasized that no further processing (such as
skeletonization) was performed.

All of the connections in the network are adapuive, although
heavily constrained. and are trained using back-propagation.
This is 1n contrast with the chnp—based method where the first

few layers of were hand-chy The ar-

15 a direct of the one m (7). In
addition to the input and output layer, the network has three
hidden layers. labeled H1. H2. and H3, respectively. Connec-
tions entering H1 and H2 are local and heavily constrained.

H1 1s composed of 12 groups of 64 units arranged as 12 in-
dependent 8 x 8 feature maps These twelve feature maps will
be designated by H1 1 through HI 12. Each unit in a feature
map takes input from a 5 x 5 neighborhood on the input
plane For units in layer H1 that are one unit apart, their recep-
uve fields (in the input layer) are two pixels apart. Thus. the
input image 1s undersampled and some position information s
eliminated 1n the process. A similar two-to-one undersampling
occurs going from layer H1 to H2

This design 1s motivated by the consideration that high res-
olution may be needed 10 detect whether a feature of a certain
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Of course. units in another map (say H1 4) share another set
of 25 weights. It 1s worth mentioning that units do not share
their biases (thresholds). Therefore, each unit has 25 input
lines plus a btas. Connections extending past the boundarnes of
the input plane take their mnput from a virtual background
plane whose state 1s equal to a constant. predetermined back-
ground level, in our case, — 1. Thus. layer Hl comprises 768
units (8 x 8 x 12). 19,968 connections (768 x 26), but only
1.068 free parameters (768 biases + 25 x 12 feature kernels),
since many connections share the same weight.

Layer H2 1s also composed of 12 features maps. Each fea-
ture map contains 16 units arranged ina 4 x 4 plane. As be-
fore. these feature maps will be designated H2.1 through
H2.12. The connection scheme between H1 and H2 1s quite
simular to the one between the input and H1, but shghtly more
complicated because H1 has multiple two-dimensional maps.
Each umit in H2 combines local information coming from eight
of the 12 different feature maps 1in HI. Its receptive field 1s
composed of eight 5 x 5 neighborhoods centered around units
that are at 1dentical positions within each of the eight maps
Therefore, a unit in H2 has 200 inputs, 200 weights. and a bias.
Of course. all units in a given map are constrained 1o have iden-
uical weight vectors. The eight maps in H1. on which a map in
H2 takes 1ts inputs. are chosen according 1o the following
scheme: there are four maps in the first hidden layer (namely
H1.9 to H1.12) that are connected to all maps in the next layer
and are expected to compute coarsely-tuned features.

Connections between the remaining eight maps and H2 are
as shown 1n the first eight rows of Table I. The 1dea behind this

!Because of undersampling and non-linear saturating umit func-
nons the total effect cannot be expressed as a convolution in the strici
sense, although the spirit 1s the same.
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Tabie I. Connections between H1 and H2.

X
X
X
X
X
X
X
X

scheme 1s to a notion of be-
tween the eight maps. Because of this architecture, H2 units in
consecutive maps receive similar error signals and are expect-
ed to perform similar operations. As in the case of H1. connec-
tions falling off the boundaries of H2 maps take their input
from a virtual plane whose state 1s constantly equal to 0. To
summarize, layer H2 contains 192 units (12 x 4 x 4)and there
1s total of 38.592 connections between layers HI and H2 (192
units x 201 input lines). All these connections are controlled
by only 2.592 free parameters (12 feature maps x 200 weights
+ 192 biases)

Layer H3 has 30 units and 1s fully connected to H2. The
number of connections between H2 and H3 1s therefore 5,790
(30 x 192 + 30 biases). The output layer has 10 units and 1s
also fully connected to H3, adding another 310 weights. In
summary, the network has 1.256 units, 64,660 connections,
and 9,760 independent parameters.

Experimental Setup

All simulations were performed using the BP simulator SN
(#H running on a SUN-4/260. Before training, the weights were
imitialized with random values using a umform distribution
between —2.4/F, and 2.4/F,, where F, 1s the number of inputs
(fan-in) of the unit to which the connection belongs. The out-
put cost function 1s the usual Mean Squared Error (MSE):

SIS -
MSE= 2N N o ulo z) n
P

where P 1s the number of patterns, O 1s the number of output
units. d,,, is the destred state for output unit o when pattern pis
presented on the input. and Xop 1S the state of output unit 0

when pattern p 1s presented.
During each learning expeniment, the patterns were pre-
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Fig 5 Learning cunes

and retrained for 5 passes using a dataset that had undergone a
slightly different preprocessing. The total number of training
passes was therefore 28. The MSE was then 2.5 x 10~ 3 on the
training set and 1.8 x 102 on the test set. The percentage of
misclassified patterns was 0.14% on the training set (10 mis-
takes) and 5.0% on the test set (102 mustakes). The percentage
of rejections would be 12.1% 1o achieve 1% error on what s left
1n the test set. To get to this point took three days on a SUN-4
workstation. Figure 5 shows learning curves for the error rate
and the log MSE on the test and training set. Due 10 the highly
redundant nature of the data, the best performance on the test
set 1s obtained very quickly.

Figure 6 shows all |7 of the images in the test set that were
musclassified by the network. In most cases there 1s a reason-
able explanation. or at least an apology for the mistake. The
main problem, accounting for six of the cases, 1s erroneous seg-

sented in a constant order and the training set was
umes. The weights were updated according 1o the so—called
stochastic gradient or “on-line™ each

1savery dll’ﬁcull problem. especially
when the overlap p! g the seg-
would greatly improve the overall performance of

presentation of a single pattern) as opposed to the “true” gradi-
ent procedure (averaging over the whole training set before up-
dating the weights). Experiments show that the stochastic gra-
dient converges significantly faster than the true gradient on
highly redundant data sets such as ours. We used a variation of
the back-, that a diagonal ap-
proximation to the Hessian matrix to optimally set the learning
rate This “pseudo-Newton™ procedure 1s not believed to bring
a considerable increase in learning speed, but produces a reli-
able result without requiring extensive adjustments of the pa-
rameters (6]

Results

The MSE on the test set reached a minimum after 23 learn-
ing passes through the training set The network was then saved

the system. but would require considerable effort. In four
cases, the image 1s ambiguous even to humans. This contribu-
uion to the error rate obviously cannot be eliminated by any
method In three cases, the raw image 1s unambiguous. but the
16 x 16 image (at the input of the network) 1s ambiguous be-
cause of its low resolution. In two cases, the characters have an
unusual style which 1s not represented in the training set. a
modest increase in training set size should reduce the number
of such failures. We have no good explanation for the two re-
maining cases.

Digital Signal Processor Implementation

During the classification process, almost all of the computa-
tion tme 1s spent performing multiply/accumulate operations.
A Digital Signal Processor (DSP) is therefore a natural choice
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for implementing the neural network. because of 1ts efficiency
in performing multiply/accumulate operations. We used an
off-the-shelf board that contains 256 kBytes of local memory
and an AT&T DSP-32C general-purpose DSP with a peak per-
formance of 12.5 million multiply/add operations on 32-bit
floating point numbers (2SMFLOPS). The DSP operates as a
coprocessor. the host 1s a Personal Computer (PC). which also
contains a video acquisition board connected to a camera

The PC digitizes an 1mage and binarizes it using an adaptive
thresholding technique Next. the thresholded 1mage 1s
scanned and each connected component (or segment) 1s isolat-
ed Components that are 100 small or 100 large are discarded.
Finally the remaining components are sent 10 the DSP which
performs the ( ding desl g) and classifi-
cation steps

The overall throughput of the digit recogmizer. including
image acquisition. 1s 10-12 classifications per second and 1s
limited mainly by the normalization step. On normalized dig-
1ts. the DSP performs more than 30 classifications per second

Conclusions

In past vears. much was learned about neural networks by
studying small test problems. To make further progress. more
can be learned by large. real Id tasks, ally 1f
the tasks have been attempted in the past with other methods.
In particular. real applications contain the surprises and se-
crets of the natural world. Just as in other types of research and
engineering. there are aspects of the system that would not ap-
pear 1n a idealized model, and must be discovered through ex-
periments on real systems. We believe that our experiments on
digit recognition. described in this article. uncover aspects of
real data that cannot be inferred from small problems.

We have successfully applied neural network methods to a
large. real-world task. Our results appear 10 be the state of the
art in digit recognition. We demonstrated that a general-
purpose neural network chip can be incorporated as an acceler-
ator 1n a large network. We found that real problems with regu-
larity scale well.

We also showed that a network can be trained on a low-level
representation of data that has minimal preprocessing (as op-
posed to elaborate feature extraction).

Perhaps the most important lesson 1s the importance of con-
strained adaptation We used a complex network (capable of
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Fig 6 Misclassified images
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