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The ability of learning networks to generalize can be greatly enhanced
by providing constraints from the task domain. This paper demon-
strates how such constraints can be integrated into a backpropagation
network through the architecture of the network. This approach has
been successfully applied to the recognition of handwritten zip code
digits provided by the U.S. Postal Service. A single network learns the
entire recognition operation, going from the normalized image of the
character to the final classification.

1 Introduction

Previous work performed on recogmzing simple digit images (LeCun
1989) showed that good generalization on complex tasks can be obtained
by designing a network architecture that contains a certain amount of
a priort knowledge about the task. The basic design principle 1s to re-
duce the number of free parameters 1n the network as much as possible
without overly reducing its computational power. Application of this
principle increases the probability of correct generahization because 1t re-
sults in a specialized network architecture that has a reduced entropy
(Denker et al 1987; Patarnello and Carneval 1987, Tishby et al. 1989; Le-
Cun 1989), and a reduced Vapnik-Chervonenkis dimenstonality (Baum
and Haussler 1989).

In this paper, we apply the backpropagation algorithm (Rumelhart et
al 1986) to a real-world problem 1n recognizing handwritten digits taken
from the US Mail. Unlike previous results reported by our group on
this problem (Denker et al 1989), the learming network 1s directly fed
with mmages, rather than feature vectors, thus demonstrating the ability
of backpropagation networks to deal with large amounts of low-level
information.
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2 Zip Codes

2.1 Data Base. The data base used to tramn and test the network con-
sists of 9298 segmented numerals digitized from handwritten zip codes
that appeared on U.S. mail passing through the Buffalo, NY post office.
Examples of such images are shown in Figure 1. The digits were written
by many different people, using a great variety of sizes, writing styles,
and instruments, with widely varying amounts of care; 7291 examples
are used for tramng the network and 2007 are used for testing the gen-
eralization performance. One important feature of this data base is that
both the training set and the testing set contain numerous examples that
are ambiguous, unclassifiable, or even misclassified.

2.2 Preprocessing. Locating the zip code on the envelope and sep-
arating each digit from its neighbors, a very hard task in itself, was
performed by Postal Service contractors (Wang and Srihar1 1988). At this
point, the size of a digit image varies but is typically around 40 by 60
pixels. A linear transformation is then applied to make the image fit in
a 16 by 16 pixel image. This transformation preserves the aspect ratio
of the character, and is performed after extraneous marks in the image
have been removed. Because of the linear transformation, the resulting
image 1s not binary but has multiple gray levels, since a variable number
of pixels 1n the original image can fall into a given pixel in the target
image. The gray levels of each image are scaled and translated to fall
within the range —1to 1.

3 Network Design

3.1 Input and Output. The remainder of the recognition is entirely
performed by a multilayer network. All of the connections 1n the net-
work are adaptive, although heavily constrained, and are trained using
backpropagation. This is in contrast with earlier work (Denker et al.
1989) where the first few layers of connections were hand-chosen con-
stants implemented on a neural-network chip. The input of the network
1s a 16 by 16 normalized image. The output is composed of 10 units (one
per class) and uses place coding.

3.2 Feature Maps and Weight Sharing. Classical work 1n visual pat-
tern recognition has demonstrated the advantage of extracting local fea-
tures and combining them to form higher order features. Such knowledge
can be easily built mto the network by forcing the hidden units to com-
bine only local sources of information. Distinctive features of an object
can appear at various locations on the mput image. Therefore it seems
judicious to have a set of feature detectors that can detect a particular



Backpropagation Apphed to Handwritten Zip Code Recognition 543

L0322 - Y7 Ho
Sovof
N S T 3
572Z )<
35¥60 ;NQM

16) 19154867368 U3226414128¢
L3£97202992997225100%¢701
308441459101061540610363 |
(OLY1110304752L2007979966
891ADTLTI08STFIININRAT?955460
lol¥23S018Y 1 129930%771098 Y
01097075973319720155170%8
[07455102aSS(¥2814Y3580101763
1 737SN1(8SYC0559L0351605S
182551085030+ 75301319401

Figure 1 Examples of oniginal zip codes (top) and normalized digits from the
testing set (bottom).
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instance of a feature anywhere on the input plane. Since the precise lo-
cation of a feature 1s not relevant to the classification, we can afford to
lose some posttion mnformation in the process. Nevertheless, approximate
position information must be preserved, to allow the next levels to detect
higher order, more complex features (Fukushima 1980; Mozer 1987)

The detection of a particular feature at any location on the mput can
be easily done using the “weight sharing” techmque Weight sharing
was described in Rumelhart et al (1986) for the so-called T-C problem
and consists i having several connections (links) controlled by a single
parameter (weight). It can be interpreted as imposing equality constraints
among the connection strengths. This techmique can be implemented
with very Iittle computational overhead.

Weight sharing not only greatly reduces the number of free parame-
ters mn the network but also can express information about the geometry
and topology of the task. In our case, the first hidden layer 1s composed
of several planes that we call feature maps. All units in a plane share
the same set of weights, thereby detecting the same feature at different
locations. Since the exact position of the feature is not important, the
feature maps need not have as many units as the input.

3.3 Network Architecture. The network 1s represented m Figure 2.
Its archutecture is a direct extension of the one proposed m LeCun (1989)
The network has three hidden layers named H1, H2, and H3, respectively
Connections entering H1 and H2 are local and are heavily constramned

H1 1s composed of 12 groups of 64 units arranged as 12 independent
8 by 8 feature maps. These 12 feature maps will be designated by H11,
H12, , H112. Each unit m a feature map takes input on a 5by 5
neighborhood on the mput plane. For umts n layer H1 that are one
unit apart, ther receptive fields (in the mput layer) are two pixels apart
Thus, the mput 1mage 1s undersampled and some position mformation 1s
eliminated. A similar two-to-one undersampling occurs going from layer
H1 to H2. The motivation 1s that high resolution may be needed to detect
the presence of a feature, while 1ts exact position need not be determined
with equally high precision.

It 15 also known that the kinds of features that are important at one
place in the 1mage are likely to be important in other places. Therefore,
corresponding connections on each unit in a given feature map are con-
stramed to have the same weights. In other words, each of the 64 units
in H1 1 uses the same set of 25 weights. Each unit performs the same
operation on corresponding parts of the image. The function performed
by a feature map can thus be interpreted as a nonlinear subsampled
convolution with a 5 by 5 kernel.

Of course, units 1 another map (say H1.4) share another set of 25
weights. Units do not share their biases (thresholds). Each unit thus has
25 input lines plus a bias. Connections extending past the boundarnes of
the mput plane take their input from a virtual background plane whose
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Figure 2 Network architecture

state 1s equal to a constant, predetermined background level, in our case
—1 Thus, layer H1 comprises 768 units (8 by 8 times 12), 19,968 con-
nections (768 trmes 26), but only 1068 free parameters (768 biases plus 25
times 12 feature kernels) since many connections share the same weight

Layer H2 1s also composed of 12 features maps Each feature map
contams 16 units arranged in a 4 by 4 plane. As before, these feature
maps will be designated as H2.1,H2.2, ,H2.12. The connection scheme
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between H1 and H2 1s quite similar to the one between the mput and H1,
but slightly more complicated because H1 has multiple two-dimensional
maps Each umt i H2 combines local information coming from 8 of the
12 dufferent feature maps mn H1. Its receptive field 1s composed of exght 5
by 5 neighborhoods centered around units that are at 1dentical positions
within each of the eight maps. Thus, a unit 1n H2 has 200 wnputs, 200
welghts, and a bias. Once agarm, all units 1in a given map are constramed
to have 1dentical weight vectors. The eight maps in H1 on which a map
in H2 takes its mputs are chosen according a scheme that will not be
described here. Connections falling off the boundaries are treated like
as i H1. To summarize, layer H2 contains 192 units (12 times 4 by 4)
and there 1s a total of 38,592 connections between layers H1 and H2 (192
units times 201 input lines). All these connections are controlled by only
2592 free parameters (12 feature maps times 200 weights plus 192 biases).

Layer H3 has 30 umnits, and 1s fully connected to H2. The number
of connections between H2 and H3 is thus 5790 (30 times 192 plus 30
biases) The output layer has 10 units and 1s also fully connected to H3,
adding another 310 weights. In summary, the network has 1256 unuts,
64 660 connections, and 9760 independent parameters.

4 Experimental Environment

All simulations were performed using the backpropagation simulator SN
(Bottou and LeCun 1988) running on a SUN-4/260.

The nonhnear function used at each node was a scaled hyperbolic tan-
gent Symmetric functions of that kind are believed to y:eld faster con-
vergence, although the learning can be extremely slow 1f some weights
are too small (LeCun 1987). The target values for the output umts were
chosen within the quasilinear range of the sigmoid. This prevents the
weights from growing indefimtely and prevents the output units from
operating 1n the flat spot of the sigmoid. The output cost function was
the mean squared error.

Before traming, the weights were intialized with random values us-
ing a unuform distribution between —24/F, and 2 4/F, where F, 1s the
number of mputs (fan-m) of the unit to which the connection belongs
Thus technique tends to keep the total inputs within the operating range
of the sigmod

During each learning experiment, the patterns were repeatedly pre-
sented 1n a constant order. The weights were updated according to the
so-called stochastic gradient or “on-lme” procedure (updating after each
presentation of a single pattern) as opposed to the “true” gradient proce-
dure (averaging over the whole tramnimng set before updating the weights)
From empirical study (supported by theoretical arguments), the stochas-
tic gradient was found to converge much faster than the true gradient,
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especially on large, redundant data bases. It also finds solutions that are
more robust.

All experiments were done using a special version of Newton’s algo-
rithm that uses a positive, dragonal approximation of the Hessian matrix
(LeCun 1987; Becker and LeCun 1988). This algorithm 1s not believed to
bring a tremendous mcrease 1n learning speed but 1t converges reliably
without requiring extensive adjustments of the parameters.

5 Results

After each pass through the training set, the performance was measured
both on the traming and on the test set. The network was tramned for 23
passes through the training set (167,693 pattern presentations).

After these 23 passes, the MSE averaged over the patterns and over
the output units was 25 x 107> on the training set and 18 x 1072 on
the test set The percentage of misclassified patterns was 014% on the
traing set (10 mistakes) and 50% on the test set (102 mustakes). As
can be seen m Figure 3, the convergence is extremely quick, and shows
that backpropagation can be used on farly large tasks with reasonable
tramng times This 1s due in part to the high redundancy of real data

In a realistic application, the user usually 1s imterested in the number
of rejections necessary to reach a given level of accuracy rather than in
the raw error rate. We measured the percentage of test patterns that must
be rejected mn order to get 1% error rate on the remaining test patterns
Our main rejection criterion was that the difference between the activity
levels of the two most active units should exceed a given threshold

The percentage of rejections was then 12 1% for 1% classification error
on the remamning (nonrejected) test patterns. It should be emphasized
that the rejection thresholds were obtained using performance measures
on the test set

Some kernels synthesized by the network can be imterpreted as fea-
ture detectors remarkably similar to those found to exist m biological
vision systems (Hubel and Wiesel 1962) and/or designed mto previous
artificial character recognuzers, such as spatial derivative estimators or
off-center /on-surround type feature detectors.

Most musclassifications are due to erroneous segmentation of the im-
age nto mndividual characters. Segmentation is a very difficult problem,
especially when the characters overlap extensively. Other mustakes are
due to ambiguous patterns, low-resolution effects, or writing styles not
present n the traiming set.

Other networks with fewer feature maps were tried, but produced
worse results. Various fully connected, unconstramned networks were
also tried, but generalization performances were quite bad. For example,
a fully connected network with one hidden layer of 40 umts (10,690 con-
nections total) gave the following results: 16% misclassification on the
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Figure 3 Log mean squared error (MSE) (top) and raw error rate (bottom)
versus number of traiing passes

training set, 8 1% musclassifications on the test set, and 19 4% rejections
for 1% error rate on the remaining test patterns. A full comparative study
will be described 1 another paper

5.1 Comparison with Other Work. The first several stages of pro-
cessing 1n our previous system (described i Denker et al  1989) m-
volved convolutions mn which the coefficients had been laboriously hand
designed. In the present system, the first two layers of the network are
constrained to be convolutional, but the system automatically learns the
coefficients that make up the kernels. This “constramed backpropaga-
tion” is the key to success of the present system: 1t not only builds in shuft-
invaniance, but vastly reduces the entropy, the Vapnik-Chervonenkis di-
menstonality, and the number of free parameters, thereby proportionately
reducing the amount of traming data required to achreve a given level
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of generalization performance (Denker et al. 1987; Baum and Haussler
1989) The present system performs slightly better than the previous sys-
tem Ths 1s remarkable considering that much less specific information
about the problem was bult mnto the network. Furthermore, the new
approach seems to have more potential for improvement by designing
more specialized architectures with more connections and fewer free pa-
rameters. |

Waibel (1989) describes a large network (but still small compared to
ours) with about 18,000 connections and 1800 free parameters, tramed on
a speech recognition task. Because tramning time was prohibitive (18 days
on an Alliant mini-supercomputer), he suggested building the network
from smaller, separately tramned networks. We did not need such a mod-
ular construction procedure smce our training times were “only” 3 days
on a Sun workstation, and in any case 1t is not clear how to partition our
problem mto separately tramnable subproblems.

5.2 DSP Implementation. During the recognition process, almost all
the computation time is spent performing multiply accumulate opera-
tions, a task that digital signal processors (DSP) are specifically designed
for We used an off-the-shelf board that contains 256 kbytes of local
memory and an AT&T DSP-32C general purpose DSP with a peak per-
formance of 12 5 mullion multiply add operations per second on 32 bit
floating pomt numbers (25 MFLOPS). The DSP operates as a coproces-
sor; the host 1s a personal computer (PC), which also contamns a video
acquisition board connected to a camera.

The personal computer digitizes an 1mage and binarizes 1t using an
adaptive thresholding technique. The thresholded image 1s then scanned
and each connected component (or segment) is 1solated. Components
that are too small or too large are discarded; remaining components are
sent to the DSP for normalization and recognition. The PC gives a var-
able sized pixel map representation of a single digit to the DSP, which
performs the normalization and the classification.

The overall throughput of the digit recognizer mcluding 1mage acqui-
sition 1s 10 to 12 classifications per second and is limited mamly by the
normalization step. On normalized digits, the DSP performs more than
30 classifications per second.

6 Conclusion

We have successfully apphied backpropagation learning to a large, real-
world task. Our results appear to be at the state of the art in digit
recognition. Our network was tramned on a low-level representation of

1 A network simuilar to the one described here with 100,000 connections and 2600 free
parameters recently achieved 9% rejection for 1% error rate That is about 30% better
than the best of the hand-coded-kernel networks
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data that had mumimal preprocessing (as opposed to elaborate feature
extraction) The network had many connections but relatively few free
parameters The network architecture and the constraints on the weights
were designed to incorporate geometric knowledge about the task mnto
the system Because of the redundant nature of the data and because
of the constraints imposed on the network, the learning time was rela-
tively short considering the size of the training set. Scaling properties
were far better than one would expect just from extrapolating results of
backpropagation on smaller, artificial problems.

The final network of connections and weights obtaned by backprop-
agation learning was readily implementable on commercial digital signal
processing hardware. Throughput rates, from camera to classified i1mage,
of more than 10 digits per second were obtained.

This work points out the necessity of having flexible “network de-
sign” software tools that ease the design of complex, specialized network
architectures
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