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Abstract

Among all the supervised learning algo-
rithms, back propagation (BP) is proba-
bly the most wi(l)dely used. Although nu-
merous experimental works have demon-
strated its capabilities, a deeper theoreti-
cal understanding of the algorithm is defi-
nitely needed. We present a mathematical
framework for studying back-propagation
based on the Lagrangian formalism. In
this framework, inspired by optimal con-
trol theory, back-propagation is formu-
lated as an optimization problem with non-
linear constraints. The Lagrange function
is the sum of an output objective function
and a constraint term which describes the
network dynamics.

This approach suggests many natural ex-
tensions to the basic algorithm.

It also provides an extremely simple for-
mulation (and derivation) of continuous re-
current network equations as described by
Pineda [Pineda, 1987)].

Other easily described variations involve
either additional terms in the error func-
tion, additional constraints on the set of
solutions, or transformations of the param-
eter space. An interesting kind of con-
straint is an equality constraint among the
weights, which can be implemented with
little overhead. It 18 shown that this sort
of constraint provides a way of putting a
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priort knowledge into the network while re-
ducing the number of free parameters.

1 Introduction

The Back Propagation algorithm has recently
emerged as one of the most efficient learning
procedures for multi-layer networks of neuron-like
units. One of the reasons of the success of back-
propagation is its incredible simplicity. In fact,
back-propagation is little more than an extremely
judicious application of the chain rule and gradient
descent.

There are a number of ways to derive back-
propagation . The simplest derivation is the one
given in [Rumelhart et al, 1986]. An alternate
derivation has been proposed in [le Cun, 1986] that
uses local criteria attached to each unit which are
minimized locally. Various constraints can be put
on these local criteria giving several variations of
the original algorithm [le Cun, 1985; le Cun, 1986;
le Cun, 1987]. Various other derivations of Back
Propagation have also been reported earlier in dif-
ferent contexts [Parker, 1985] [Werbos, 1974]

The present paper proposes a derivation of back-
propagation based on the Lagrangian formalism.
An early version of this framework has been pre-
sented in [Fogelman-Soulié et al., 1986] (also pub-
lished in [Fogelman-Soulié et al., 1987]) and a more
extended version in [le Cun, 1987].

This formalism 1s directly inspired by optimal
control theory. There is an abundant literature on
optimal control that uses the method of Lagrange
multipliers to find the optimal values of a set of
control variables. The continuous version of this
method is called variational calculus, and its pur-
pose 18 to find a function (usually not a a set of dis-
crete values) that munimizes an objective function
subject to constraints. Variational calculus and 1its
























