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Abstract

We describe a vision-based obstacle avoidance system for off-road mo-
bile robots. The system is trained from end to end to map raw input
images to steering angles. It is trained in supervised mode to predict the
steering angles provided by a human driver during training runs collected
in a wide variety of terrains, weather conditions, lighting conditions, and
obstacle types. The robot is a 50cm off-road truck, with two forward-
pointing wireless color cameras. A remote computer processes the video
and controls the robot via radio. The learning system is a large 6-layer
convolutional network whose input is a single left/right pair of unpro-
cessed low-resolution images. The robot exhibits an excellent ability to
detect obstacles and navigate around them in real time at speeds of 2 m/s.

1 Introduction

Autonomous off-road vehicles have vast potential applications in a wide spectrum of do-
mains such as exploration, search and rescue, transport of supplies, environmental manage-
ment, and reconnaissance. Building a fully autonomous off-road vehicle that can reliably
navigate and avoid obstacles at high speed is a major challenge for robotics, and a new
domain of application for machine learning research.
The last few years have seen considerable progress toward that goal, particularly in areas
such as mapping the environment from active range sensors and stereo cameras [11, 7],
simultaneously navigating and building maps [6, 15], and classifying obstacle types.
Among the various sub-problems of off-road vehicle navigation, obstacle detection and
avoidance is a subject of prime importance. The wide diversity of appearance of potential
obstacles, and the variability of the surroundings, lighting conditions, and other factors,
make the problem very challenging.
Many recent efforts have attacked the problem by relying on a multiplicity of sensors, in-
cluding laser range finder and radar [11]. While active sensors make the problem consider-
ably simpler, there seems to be an interest from potential users for purely passive systems
that rely exclusively on camera input. Cameras are considerably less expensive, bulky,



power hungry, and detectable than active sensors, allowng levels of miniaturizations that
are not otherwise possible. More importantly, active sensors can be slow, limited in range,
and easily confused by vegetation, despite rapid progress in the area [2].
Avoiding obstacles by relying solely on camera input requires solving a highly complex
vision problem. A time-honored approach is to derive range maps from multiple images
through multiple cameras or through motion [6, 5]. Deriving steering angles to avoid ob-
stacles from the range maps is a simple matter. A large number of techniques have been
proposed in the literature to construct range maps from stereo images. Such methods have
been used successfully for many years for navigation in indoor environments where edge
features can be reliably detected and matched [1], but navigation in outdoors environment,
despite a long history, is still a challenge [14, 3]: real-time stereo algorithms are consid-
erably less reliable in unconstrained outdoors environments. The extreme variability of
lighting conditions, and the highly unstructured nature of natural objects such as tall grass,
bushes and other vegetation, water surfaces, and objects with repeating textures, conspire
to limit the reliability of this approach. In addition, stereo-based methods have a rather
limited range, which dramatically limits the maximum driving speed.

2 End-To-End Learning for Obstacle Avoidance

In general, computing depth from stereo images is an ill-posed problem, but the depth map
is only a means to an end. Ultimately, the output of an obstacle avoidance system is a set
of possible steering angles that direct the robot toward traversible regions.
Our approach is to view the entire problem of mapping input stereo images to possible
steering angles as a single indivisible task to be learned from end to end. Our learning
system takes raw color images from two forward-pointing cameras mounted on the robot,
and maps them to a set of possible steering angles through a single trained function.
The training data was collected by recording the actions of a human driver together with the
video data. The human driver remotely drives the robot straight ahead until the robot en-
counters a non-traversible obstacle. The human driver then avoids the obstacle by steering
the robot in the appropriate direction. The learning system is trained in supervised mode.
It takes a single pair of heavily-subsampled images from the two cameras, and is trained to
predict the steering angle produced by the human driver at that time.
The learning architecture is a 6-layer convolutional network [9]. The network takes the
left and right 149×58 color images and produces two outputs. A large value on the first
output is interpreted as a laft steering command while a large value on the second output
indicates a right steering command. Each layer in a convolutional network can be viewed as
a set of trainable, shift-invariant linear filters with local support, followed by a point-wise
non-linear saturation function. All the parameters of all the filters in the various layers
are trained simultaneously. The learning algorithm minimizes the discrepancy between the
desired output vector and the output vector produced by the output layer.
The approach is somewhat reminiscent of the ALVINN and MANIAC systems [13, 4]. The
main differences with ALVINN are: (1) our system uses stereo cameras; (2) it is trained
for off-road obtacle avoidance rather than road following; (3) Our trainable system uses a
convolutional network rather than a traditional fully-connected neural net.
Convolutional networks have two considerable advantages for this applications. Their lo-
cal and sparse connection scheme allows us to handle images of higher resolution than
ALVINN while keeping the size of the network within reasonnable limits. Convolutional
nets are particularly well suited for our task because local feature detectors that combine
inputs from the left and right images can be useful for estimating distances to obstacles
(possibly by estimating disparities). Furthermore, the local and shift-invariant property of
the filters allows the system to learn relevant local features with a limited amount of training
data.
They key advantage of the approach is that the entire function from raw pixels to steering
angles is trained from data, which completely eliminates the need for feature design and



selection, geometry, camera calibration, and hand-tuning of parameters. The main moti-
vation for the use of end-to-end learning is, in fact, to eliminate the need for hand-crafted
heuristics. Relying on automatic global optimization of an objective function from massive
amounts for data may produce systems that are more robust to the unpredictable variability
of the real world. Another potential benefit of a pure learning-based approach is that the
system may use other cues than stereo disparity to detect obstacles, possibly alleviating the
short-sightedness of methods based purely on stereo matching.

3 Vehicle Hardware

We built a small and light-weight vehicle which can be carried by a single person so as
to facilitate data collection and testing in a wide variety of environments. Using a small,
rugged and low-cost robot allowed us to drive at relatively high speed without fear causing
damage to people, property or the robot itself. The downside of this approach is the limited
payload, too limited for holding the computing power necessary for the visual processing.
Therefore, the robot has no significant on-board computing power. It is remotely controled
by a off-board computer. A wireless link is used to transmit video and sensor readings to
the remote computer. Throttle and steering controls are sent from the computer to the robot
through a regular radio control channel.
The robot chassis was built around a customized 1/10-th scale remote-controlled, electric-
powered, four-wheel-drive truck which was roughly 50cm in length. The typical speed of
the robot during data collection and testing sessions was roughly 2 meters per second. Two
forward-pointing low-cost 1/3-inch CCD cameras were mounted 110mm apart behind a
clear lexan window. With 2.5mm lenses, the horizontal field of view of each camera was
about 100 degrees.
A pair of 900MHz analog video transmitters was used to send the camera outputs to the
remote computer. The analog video links were subject to high signal noise, color shifts,
frequent interferences, and occasional video drop-outs. But the small size, light weight,
and low cost provided clear advantages. The vehicle is shown in Figure 1. The remote
control station consisted of a 1.4GHz Athlon PC running Linux with video capture cards,
and an interface to an R/C transmitter.

Figure 1: Left: The robot is a modified 50 cm-long truck platform controled by a remote
computer. Middle: sample images images from the training data. Right: poor reception
occasionally caused bad quality images.

4 Data Collection

During a data collection session, the human operator wears video goggles fed with the
video signal from one the robot’s cameras (no stereo), and controls the robot through a
joystick connected to the PC. During each run, the PC records the output of the two video
cameras at 15 frames per second, together with the steering angle and throttle setting from
the operator.



A crucially important requirement of the data collection process was to collect large
amounts of data with enough diversity of terrain, obstacles, and lighting conditions. Tt
was necessary for the human driver to adopt a consistent obstacle avoidance behaviour. To
ensure this, the human driver was to drive the vehicle straight ahead whenever no obstacle
was present within a threatening distance. Whenever the robot approached an obstacle, the
human driver had to steer left or right so as to avoid the obstacle. The general strategy
for collecting training data was as follows: (a) Collecting data from as large a variety of
off-road training grounds as possible. Data was collected from a large number of parks,
playgrounds, frontyards and backyards of a number of suburban homes, and heavily clut-
tered construction areas; (b) Collecting data with various lighting conditions, i. e., different
weather conditions and different times of day; (c) Collecting sequences where the vehicle
starts driving straight and then is steered left or right as the robot approached an obstacle;
(d) Avoiding turns when no obstacles were present; (e) Including straight runs with no ob-
stacles and no turns as part of the training set; (f) Trying to be consistent in the turning
behavior, i. e., always turning at approximately the same distance from an obstacle.
Even though great care was taken in collecting the highest quality training data, there were
a number of imperfections in the training data that could not be avoided: (a) The small-
form-factor, low-cost cameras presented significant differences in their default settings. In
particular, the white balance of the two cameras were somewhat different; (b) To maximize
image quality, the automatic gain control and automatic exposure were activated. Because
of differences in fabrication, the left and right images had slightly different brightness and
contrast characteristics. In particular, the AGC adjustments seem to react at different speeds
and amplitudes; (c) Because of AGC, driving into the sunlight caused the images to become
very dark and obstacles to become hard to detect; (d) The wireless video connection caused
dropouts and distortions of some frames. Approximately 5 % of the frames were affected.
An example is shown in Figures 1; (e) The cameras were mounted rigidly on the vehicle
and were exposed to vibration, despite the suspension. Despite these difficult conditions,
the system managed to learn the task quite well as will be shown later.
The data was recorded and archived at a resolution of 320×240× pixels at 15 frames per
second. The data was collected on 17 different days during the Winter of 2003/2004 (the
sun was very low on the horizon). A total of 1,500 clips were collected with an average
length of about 85 frames each. This resulted in a total of about 127,000 individual pairs of
frames. Segments during which the robot was driven into position in preparation for a run
were edited out. No other manual data cleaning took place. In the end, 95,000 frame pairs
were used for training and 32,000 for validation/testing. The training pairs and testing pairs
came from different sequences (and often different locations).
Figure 1 shows example snapshots from the training data, including an image with poor
reception. Note that only one of the two (stereo) images is shown. High noise and frame
dropouts occurred in approximately 5 % of the frames. It was decided to leave them in the
training set and test set so as to train the system under realistic conditions.

5 The Learning System

The entire processing consists of a single convolutional network. The architecture of con-
volutional nets is somewhat inspired by the structure of biological visual systems. Con-
volutional nets have been used successfully in a number of vision applications such as
handwriting recognition [9], object recognition [10], and face detection [12].
The input to the convolutional net consists of 6 planes of size 149×58 pixels. The six
planes respectively contain the Y, U and V components for the left camera and the right
camera. The input images were obtained by cropping the 320 × 240 images, and through
2× horizontal low-pass filtering and subsampling, and 4× vertical low-pass filtering and
subsampling. The horizontal resolution was set higher so as to preserve more accurate
image disparity information.
Each layer in a convolutional net is composed units organized in planes called feature maps.
Each unit in a feature map takes inputs from a small neighborhood within the feature maps



of the previous layer. Neighborhing units in a feature map are connected to neighboring
(possibly overlapping) windows. Each unit computes a weighted sum of its inputs and
passes the result through a sigmoid saturation function. All units within a feature map share
the same weights. Therefore, each feature map can be seen as convolving the feature maps
of the previous layers with small-size kernels, and passing the sum of those convolutions
through sigmoid functions. Units in a feature map detect local features at all locations on
the previous layer.
The first layer contains 6 feature maps of size 147×56 connected to various combinations
of the input maps through 3×3 kernels. The first feature map is connected to the YUV
planes of the left image, the second feature map to the YUV planes of the right image, and
the other 4 feature maps to all 6 input planes. Those 4 feature maps are binocular, and
can learn filters that compare the location of features in the left and right images. Because
of the weight sharing, the first layer merely has 276 free parameters (30 kernels of size
3×3 plus 6 biases). The next layer is an averaging/subsampling layer of size 49×14 whose
purpose is to reduce the spatial resolution of the feature maps so as to build invariances
to small geometric distortions of the input. The subsampling ratios are 3 horizontally and
4 vertically. The 3-rd layer contains 24 feature maps of size 45×12. Each feature map is
connected to various subsests of maps in the previous layer through a total of 96 kernels of
size 5×3. The 4-th layer is an averaging/subsampling layer of size 9×4 with 5×3 subsam-
pling ratios. The 5-th layer contains 100 feature maps of size 1×1 connected to the 4-th
layer through 2400 kernels of size 9×4 (full connection). finally, the output layer contains
two units fully-connected to the 100 units in the 5-th layer. The two outputs respectively
code for “turn left” and “turn right” commands. The network has 3.15 Million connections
and about 72,000 trainable parameters.
The bottom half of figure 2 shows the states of the six layers of the convolutional net. the
size of the input, 149×58, was essentially limited by the computing power of the remote
computer (a 1.4GHz Athlon). The network as shown runs in about 60ms per image pair on
the remote computer. Including all the processing, the driving system ran at a rate of 10
cycles per second.
The system’s output is computed on a frame by frame basis with no memory of the past
and no time window. Using multiple successive frames as input would seem like a good
idea since the multiple views resulting from ego-motion facilitates the segmentation and
detection of nearby obstacles. Unfortunately, the supervised learning approach precludes
the use of multiple frames. The reason is that since the steering is fairly smooth in time
(with long, stable periods), the current rate of turn is an excellent predictor of the next
desired steering angle. But the current rate of turn is easily derived from multiple successive
frames. Hence, a system trained with multiple frames would merely predict a steering
angle equal to the current rate of turn as observed through the camera. This would lead to
catastrophic behavior in test mode. The robot would simply turn in circles.
The system was trained with a stochastic gradient-based method that automatically sets the
relative step sizes of the parameters based on the local curvature of the loss surface [8]. Gra-
dients were computed using the variant of back-propagation appropriate for convolutional
nets.

6 Results

Two performance measurements were recorded, the average loss, and the percentage of
“correctly classified” steering angles. The average loss is the sum of squared differences
between outputs produced by the system and the target outputs, averaged over all sam-
ples. The percentage of correctly classified steering angles measures the number of times
the predicted steering angle, quantized into three bins (left, straight, right), agrees with
steering angle provided by the human driver. Since the thresholds for deciding whether an
angle counted as left, center, or right were somewhat arbitrary, the percentages cannot be
intepreted in absolute terms, but merely as a relative figure of merit for comparing runs and
architectures.



Figure 2: Internal state of the convolutional net for two sample frames. The top row shows
left/right image pairs extracted from the test set. The light-blue bars below show the steer-
ing angle produced by the system. The bottom halves show the state of the layers of the
network, where each column is a layer (the penultimate layer is not shown). Each rectan-
gular image is a feature map in which each pixel represents a unit activation. The YUV
components of the left and right input images are in the leftmost column.

With 95,000 training image pairs, training took 18 epochs through the training set. No
significant improvements in the error rate occurred thereafter. After training, the error rate
was 25.1% on the training set, and 35.8% on the test set. The average loss (mean-sqaured
error) was 0.88 on the training set and 1.24 on the test set. A complete training session
required about four days of CPU time on a 3.0GHz Pentium/Xeon-based server. Naturally,
a classification error rate of 35.8 % doesn’t mean that the vehicle crashes into obstacles
35.8 % of the time, but merely that the prediction of the system was in a different bin
than that of the human drivers for 35.8 % of the frames. The seemingly high error rate is
not an accurate reflection of the actual effectiveness of the robot in the field. There are
several reasons for this. First, there may be several legitimate steering angles for a given
image pair: turning left or right around an obstacle may both be valid options, but our
performance measure would record one of those options as incorrect. In addition, many
illegitimate errors are recorded when the system starts turning at a different time than the
human driver, or when the precise values of the steering angles are different enough to be
in different bins, but close enough to cause the robot to avoid the obstacle. Perhaps more
informative is diagram in figure 3. It shows the steering angle produced by the system and
the steering angle provided by the human driver for 8000 frames from the test set. It is
clear for the plot that only a small number of obstacles would not have been avoided by the
robot.
The best performance measure is a set of actual runs through repre-
sentative testing grounds. Videos of typical test runs are available at
http://www.cs.nyu.edu/˜yann/research/dave/index.html.
Figure 2 shows a snapshot of the trained system in action. The network was presented with
a scene that was not present in the training set. This figure shows that the system can detect
obstacles and predict appropriate steering angles in the presence of back-lighting and with
wild difference between the automatics gain settings of the left and right cameras.
Another visualization of the results can be seen in Figures 4. They are snapshots of
video clips recorded from the vehicle’s cameras while the vehicle was driving itself au-
tonomously. Only one of the two camera outputs is shown here. Each picture also shows



Figure 3: The steering angle produced by the system (black) compared to the steering
angle provided by the human operator (red line) for 8000 frames from the test set. Very
few obstacles would not have been avoided by the system.

the steering angle produced by the system for that particular input.

7 Conclusion

We have demonstrate the applicability of end-to-end learning methods to the task of obsta-
cle avoidance for off-road robots.
A 6-layer convolutional network was trained with massive amounts of data to emulate the
obstacle avoidance behavior of a human driver. the architecture of the system allowed it
to learn low-level and high-level features that reliably predicted the bearing of traversible
areas in the visual field.
The main advantage of the system is its robustness to the extreme diversity of situations
in off-road environments. Its main design advantage is that it is trained from raw pixels to
directly produce steering angles. The approach essentially eliminates the need for manual
calibration, adjustments, parameter tuning etc. Furthermore, the method gets around the
need to design and select an appropriate set of feature detectors, as well as the need to
design robust and fast stereo algorithms.
The construction of a fully autonomous driving system for ground robots will require sev-
eral other components besides the purely-reactive obstacle detection and avoidance system
described here. The present work is merely one component of a future system that will
include map building, visual odometry, spatial reasoning, path finding, and other strategies
for the identification of traversable areas.
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