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Abstract. Fast visual recognition in the mammalian cortex seems to be a hier-
archical process by which the representation of the visual world is transformed
in multiple stages from low-level retinotopic features to high-level, global and
invariant features, and to object categories. Every single step in this hierarchy
seems to be subject to learning. How does the visual cortex learn such hierar-
chical representations by just looking at the world? How could computers learn
such representations from data? Computer vision models that are weakly inspired
by the visual cortex will be described. A number of unsupervised learning algo-
rithms to train these models will be presented, which are based on the sparse
auto-encoder concept. The effectiveness of these algorithms for learning invari-
ant feature hierarchies will be demonstrated with a number of practical tasks such
as scene parsing, pedestrian detection, and object classification.

1 Introduction

The age-old architecture of pattern recognition systems is composed of two parts: a
feature extractor and a classifier. The feature extractor is generally built “by hand”, and
transforms the raw input into a representation suitable for classification. The classifier,
on the other hand, is fairly generic, and is the only trainable part of the system. Much
effort and ingenuity has been devoted to designing appropriate feature extractors for
particular problems and input modalities (see [1,2] for the most popular methods in
vision).

In contrast, the ventral pathway of the visual cortex appears to comprise more than
just two stages: the lateral geniculate nucleus which performs a sort of multi-scale high-
pass filtering and contrast normalization, V1 which consists mainly of pooled oriented
edge detectors with local receptive fields [3], V2 and V4 which seem to detect larger
and more complex local motifs [4], and the inferro-temporal cortex in which object
categories are encoded [5]. Although the visual cortex contains numerous feedback
connections, fast object recognition appears to be an essentially feed-forward affair [6].
Every stage in the system seem subject to plasticity and learning, and the function of
each area seems largely determined by its afferent signals through learning, as demon-
strated by brain rewiring experiments [7].

Building a multi-stage recognition system in which all the stages are trained has been
a long-term interest of mine since I started working on pattern recognition in the early
1980’s. The obvious advantage is that this would reduce the amount of “manual” labor
by leaving the design of the feature extractor to the learning algorithm. The feature ex-
tractor could be the optimally tuned to the task at hand. But the idea of feature learning
has encountered a surprisingly large amount of resistance from the computer vision and
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Fig. 1. A general multi-stage architecture for hierarchical feature learning and extraction

machine learning communities. The machine learning (ML) community has had a good
handle on how to build classifiers for quite a while now. But the problem of learning
internal representations of the perceptual world has received little attention until very
recently. How do we train multi-stage systems that include the feature extractor, clas-
sifier, and high-level contextual post-processor in an integrated fashion? This question,
which was already identified in the early 60’s, has recently seen an explosive resurgence
of interest, and has come to be known as the deep learning problem.

In the mid 1980’s, there was a hope that neural nets with hidden units (Boltzmann
machines or feed-forward neural nets) would offer a solution to the feature learning
problem. But training generic neural networks was a complex and time consuming af-
fair with the computers and software tools of the time, and given the rarity of large
datasets. Furthermore, the basic architectural components used in traditional neural nets
didn’t seem appropriate for image recognition. One must design the architecture of the
system to take advantage of the properties of the signal.

1.1 A General Architecture for Hierarchical Processing

A particularly important question is how to design the architecture so that the system
can easily learn representations that are invariant (or robust) to irrelevant variations of
the input. In the case of images, that includes translation, scaling, mild rotation, illumi-
nation, etc. A number of early researchers were inspired by Hubel and Wiesel’s seminal
work on the primary visual cortex, and their simple-cell/complex-cell model [3].

A general multi-stage architecture for hierarchical feature learning is shown in fig-
ure 1 (a 3-stage system is shown here). Each stage conforms to the simple-cell/complex-
cell idea: (1) a normalization layer, which can be a whitening operation (e.g. ZCA), or in
the case of spatial signals a high-pass filtering with local energy normalization at a sin-
gle scale or multiple scales (Laplacian pyramid); (2) a linear filtering layer, which can be
seen as a matrix or as a bank of convolution filters; (3) a fixed non-linear transformation
layer, which can be a point-wise non-linear mapping (e.g. logistic, tanh, shrinking func-
tion, or half-rectifier), or something harsher such as a multinomial logistic or a winner-
take-all; (4) a pooling layer, which aggregates a subset of values from the previous layer,
and generally reduces the dimensionality of the representation though subsampling.
Layer 1 is analogous to the LGN, layers 2 and 3 to groups of simple cells, and layer 4
to groups of complex cells. Multiple such 4-layer stages can be cascaded (typically 2
to 5). The last stage may often dispenses with the pooling layer and can be viewed as a
classifer (or predictor), operating on the features extracted by the previous stages.
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Fig. 2. A convolutional network architecture, which is a particular instance of the multi-stage
architecture shown above

The role of layer 1 is to decorrelate variables and accentuate the differences (or
ratios) between them, while eliminating variations of the absolute energy so that the
non-linearity of layers 3 can always operate at its sweet spot. Decorrelation (and mean
removal) has the additional advantage of accelerating gradient-based learning [8].

Layer 2 and 3 detect conjunctions of features or motifs on the previous stage. Its role
is to non-linearly embed the input into a higher-dimensional space, so that inputs that
are semantically different are likely to be represented by different patterns of activity.
This expansion plays a similar role as using a non-linear kernel functions in a kernel
machine: in high-dimensional spaces, categories are easier to separate. More generally,
a function of interest is more likely to be linear when its input variable is embedded in a
high dimensional space. The difference with kernel machine is that our filter banks will
be trained from data, rather than simply selected from the training set.

Layer 4 serves to merge semantically similar things that have been partitioned into
different patterns of activity by the simple cells. This is where invariance is built.
Rather than producing invariance in the mathematical sense, the pooling layer merely
“smoothes out” the input-output mapping so that irrelevant variations in the input affect
the output smoothly, and in ways that can be easily dealt with (eliminated, if necessary).
The pooling operation can consist of any symmetric aggregation function, such as an
average, a max, a log-mixture (log

∑
i e

xi), or an Lp norm ( p
√∑

i |xi|p), particularly
with p = 1, 2, or ∞ (max). A theoretical analysis of pooling operations suggests that
L∞ is best when the features are sparse and the number of pooled variable is small,
while average, L1 or L2 are best when the features are less sparse or the pooling area is
large [9]. In practice L2 pooling is a good tradeoff.

One may interpret the filter bank and non-linearity as conjunction operators (similar
to logical AND or NAND in the boolean case) and the pooling operation as a sort of dis-
junction operator (similar to a logical OR), making a single stage a kind of non-boolean
Disjunctive Normal Form.

1.2 Convolutional Architectures

Data from natural sensors often comes to us as multi-dimensional arrays in which lo-
cal group of values are correlated, and the local statistics are invariant to the particular
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location in the array. For example, images can be seen as a series of 2D slices where
each slice is a color channel, and the dimensions are spatial. The statistics of images are
translation invariant, which means that if one particular filter is useful on one part of an
image, it is probably useful on other parts of the image as well. This leads to the convo-
lutional network architecture shown in figure 2 [10,11,12]. The filter bank in each stage
is, in fact, a bank of convolution kernels applied to slices of the input. Filter outputs ap-
plied to multiple input channels can be combined additively to form a slice of the output
(known as a feature map). The idea applies to other modalities than image, including
audio, a (1+1)D array with one dimension being frequency channels and one being
time, video, a (1+3)D array with color channels, time, and space. Other modalities such
as RGB+Depth, sonar, radar, lidar, multi-spectral images, etc can be handled similarly.

The architecture shown in figure 2 has a structure reminiscent of the LGN-V1-V2-
V4-IT hierarchy in the ventral pathway of the visual cortex. The simple cells have local
receptive fields and are organized in a retinotopic fashion. The pooling layers are sub-
sampled spatially, which reduces the spatial resolution of the representation and makes
the representation vary smoothly with translations and small distortions of the input.
Units have local receptive fields whose size increases as we move up in the hierar-
chy [13].

Supervised training of convolutional nets is performed using a form of stochastic
gradient descent to minimize the discrepancy between the desired output and the actual
output of the network. All the coefficient of all the filters in all the layers are updated
simultaneously by the learning procedure. The gradients are computed with the back-
propagation method.

A number of similar models have been proposed with different learning algorithms,
starting with Fukushima’s Neocognitron [14], and several others in the last 10 years
[15,16]. It is important to notice that the most popular feature extraction methods in
computer vision, SIFT [17] and HoG [18], are very much inspired by the simple-
cell/complex-cell concept and conform to the first stage of figure 1. Moreover, the most
popular standard recognition pipelines [19,20] conforms to the 3-stage architecture of
figure 1: the first stage is SIFT, densely extracted over the input (similar to a convo-
lutional network), the second stage filters are trained in an unsupervised manner with
K-means (the non-linearity is a winner-take-all), and the pooling is an average over
multiple scales. Finally the classifier is a support vector machine.

There have been numerous applications of convolutional networks going back to
the mid 1990’s for such applications as OCR and handwriting recognition, face, per-
son, and license plate detection, age and gender estimation, video surveillance, etc
(see [21] and references therein). They have been deployed by companies such as
Google, Microsoft, AT&T, and NEC. In recent months, deep learning systems have
broken long-held record on a number of benchmarks in a number of areas including
speech recognition [22,23,24], object recognition vision [25,26,27], scene parsing [28],
action recognition in video [29,30], natural language processing [31,32], and musical
genre recognition [33].
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2 Unsupervised Feature Learning

The resurgence of interest in deep architectures was caused in part by the appearance
of unsupervised learning algorithms to train (or pre-train) the layers of a multi-stage
system. The basic procedure is to pre-train each stage of a network in an unsupervised
manner one after the other. After all the stages have been pre-trained, the entire network
is fine-tuned using supervised learning (with gradient back-propagation). This proce-
dure has two advantages: (1) unsupervised pre-training seems to place the system in a
favorable starting point for supervised fine-tuning that will produce better performance
results; (2) unsupervised learning leverages the availability of massive amounts of un-
labeled data. Unsupervised pre-training on unlabeled data seems to “consume” a large
amount of free parameters in the model, and allows us to use very large and flexible
networks that would be hopelessly over-parameterized in a purely-supervised setting.

There are many methods to pre-train the filter banks of a multi-stage system in un-
supervised mode, including (from the simple to the complicated): simply using ran-
domly picked samples as filters; using K-means to produce prototypes and using them
as filters [34]; using dictionary learning in sparse coding and use the basis functions
as filters [35,36,37,38,12,39,34]; train some version of regularized auto-encoder such
as sparse auto-encoder, denoising auto-encoder [40] or contracting auto-encoder [41];
train a restricted Boltzmann machine and use the weight matrix as filters [42] (see [43]
for a recent review).

We will concentrate on the concept of sparse auto-encoder, as implemented in the
Predictive Sparse Decomposition (PSD) method [37,38,39]. PSD is based on the clas-
sical sparse coding and sparse modeling algorithm [44]: a vector (e.g. an image patch)
Y is encoded as a feature vector Z∗ by minimizing the following energy function:

E(Y, Z,Wd) = ||Y −WdZ||2 + α
∑

k

|Zk| Z∗ = argminZE(Y, Z,W ) (1)

where Wd is a so-called dictionary matrix whose columns Wdk are called atoms or
basis functions. The vector Z has generally higher dimension than Y (overcomplete
representation). The minimization procedure will find a small number of column of Wd

that can be linearly combined to reconstruct Y . The coefficients are the components
of Z , many of which will be zero, due to the sparsity-inducing L1 regularization term.
Given a training set of input vectors Y i, i = 1 . . . P , learning Wd can be performed
using stochastic gradient descent on Wd to minimize the reconstructive loss function
LR(W ) =

∑P
i=1 minz E(Y i, Z,W ), under the constraints that the columns of Wd be

within the unit sphere.
Extracting features with sparse coding work beautifully as a feature extraction method

when the dictionary matrix is trained with sparse modeling, particularly for learning
mid-level features for object recognition [45,20]. But inferring Z∗ from a particular Y
is slow, because it involves minimizing the L1/L2 energy function above.

One solution to this problem is the PSD method, which consist in training an param-
eterized non-linear encoder function g(Y,We) where We is encoder matrix or filter
matrix, so as to best predict the optimal sparse feature vector Z∗ for all training sam-
ples Y i. The rows of We can be interpreted as a filter bank. Once the decoder and the
encoder are trained, the decoder can be dispensed with, and the encoder used as a feture
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extractor (filter bank + non-linearity). The training can be performed by minimizing the
predictive loss function

LP (We) =

p∑

i=1

||min
Z

E(Y i, Z,Wd)− g(Y i,We)||2.

Better yet, one can define a compound energy function

EPSD(Y, Z,Wd,We) = ||Y −WdZ||2 + ||Z − g(Y,We)||2 + α
∑

k

|Zk|,

and train Wd and We to minimize the PSD loss function:

LPSD(Wd,We) =

p∑

i=1

min
Z

EPSD(Y i, Z,Wd,We).

The encoder architecture can be a simple function such as shrinkβ(WeY ), where
shrinkβ is the shrinking function applied indepently to each component of WeY :

shrinkβ(x) = [0 if − β < x < β; x− β if x > β; x+ β if x < −β]

A more sophisticated version of PSD [39] uses a parameterized version of the unfolded
flow graph of the FISTA algorithm for sparse coding [46]. This produces better sparse
codes, but it’s not clear whether the resulting feature vectors are better for recognition
purpose (except perhaps in the highly over-complete case).

When trained on natural image patches, PSD (like sparse modeling) produces Gabor-
like oriented filters (edgelets) at various orientation, frequencies, and positions within
the patch (when trained to produce 2nd-stage features, the interpretation is considerably
less clear). However, since the filters trained in this manner are meant to be used in a
convolutional manner, it would seem appropriate to train them convolutionally. Training
PSD (or sparse coding) at the patch level is inefficient, since shifted versions of each
filter must be generated to reconstruct each image patch. Convolutional sparse cod-
ing [47] and convolutional PSD [48] solve that problem by viewing the reconstruction
as multiple convolutions

E(Y, Z,Wd) = ||Y −
∑

k

Wdk ∗ Zk||2 + α
∑

kpq

|Zkpq|

where Zk is a feature map (an image about the same size as image Y ) instead of a
scalar, Wdk is a convolution kernel, and ∗ is the convolution operator (the predictive
energy term was left out). Convolutional PSD produces much more diverse filters than
patch-based PSD, as shown in figure 3.

A convolutional network pre-trained with Convolutional PSD generally yields better
performance than if the network is trained purely supervised.

3 Unsupervised Invariant Feature Learning

The PSD training procedure is quite effective, but doesn’t take into account the fact that
the features it produces are aggregated by the pooling layer (complex cells). Invariant



502 Y. LeCun

Fig. 3. Filters obtained with patch-based PSD (left) and convolutional PSD (right). Each square
filter is a row of the encoder matrix We. The convolutional version produces much more diverse
and less redundant filters.

Fig. 4. Left: topographic maps of filter produced by Invariant PSD when the groups (complex
cells) are sqaure blocks of feature components in this 2D topology; Right: pinwheel-like patterns
obtained when training PSD with group sparsity on 4X overcomplete units with local 15x15
receptive fields without shared weights.

PSD is an attempt to integrate the complex cells in the unsupervised training. This can
be done with the idea of group sparsity [38,49,50], which is reminiscent of sub-space
ICA [51] and Product of Experts [52]. the main idea is to replace the sparsity penalty
in the PSD energy function by a group sparsity penalty:

EPSD(Y, Z,Wd,We) = ||Y −WdZ||2 + ||Z − g(Y,We)||2 + α
∑

g

√∑

k∈g

Z2
k ,

where g is an index over groups of components of Z (possibly overlapping groups) The
output of each group can be seen as an L2 pooling of the components of Z that belong
to the group, and is akin to a complex cell. With this regularizer, the system tries to
activate the smallest number of groups, but may allow multiple units within a group to
be active. This causes filters within a group to be similar to each other because simi-
lar filters tend to be active simultaneously (e.g. edge detectors at similar orientations).
When the components of Z are arragend in a particular topology (e.g. 2D torus) and
the groups are overlaping regions in that topology, the filters organize themselves into
topographic maps similar to what is observed in V1. Figure 4 shows examples of such
topographic maps of filters.
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4 Conclusion

Despite the ménagerie of unsupervised feature learning algorithms at our disposal, few
would say that we have the perfect algorithm in our hands. Although some biologically-
inspired algorithms, such as convolutional networks and their variations, produce
record-breaking results on practical datasets such as scene parsing, the ability of these
algorithms to learn is still far from what is observed in humans and animals. One must
ask whether there exist a simple learning “algorithm” used by the cortex, or if there
is a simple principle on which such an algorithm could be based. It is certainly worth
looking for such a principle.
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