
Dynamic Factor Graphs

for Time Series Modeling

Piotr Mirowski and Yann LeCun

Courant Institute of Mathematical Sciences, New York University,
719 Broadway, New York, NY 10003 USA

{mirowski,yann}@cs.nyu.edu
http://cs.nyu.edu/∼mirowski/

Abstract. This article presents a method for training Dynamic Fac-
tor Graphs (DFG) with continuous latent state variables. A DFG in-
cludes factors modeling joint probabilities between hidden and observed
variables, and factors modeling dynamical constraints on hidden vari-
ables. The DFG assigns a scalar energy to each configuration of hidden
and observed variables. A gradient-based inference procedure finds the
minimum-energy state sequence for a given observation sequence. Be-
cause the factors are designed to ensure a constant partition function,
they can be trained by minimizing the expected energy over training
sequences with respect to the factors’ parameters. These alternated in-
ference and parameter updates can be seen as a deterministic EM-like
procedure. Using smoothing regularizers, DFGs are shown to reconstruct
chaotic attractors and to separate a mixture of independent oscillatory
sources perfectly. DFGs outperform the best known algorithm on the
CATS competition benchmark for time series prediction. DFGs also suc-
cessfully reconstruct missing motion capture data.

Key words: factor graphs, time series, dynamic Bayesian networks, re-
current networks, expectation-maximization

1 Introduction

1.1 Background

Time series collected from real-world phenomena are often an incomplete picture
of a complex underlying dynamical process with a high-dimensional state that
cannot be directly observed. For example, human motion capture data gives
the positions of a few markers that are the reflection of a large number of joint
angles with complex kinematic and dynamical constraints. The aim of this article
is to deal with situations in which the hidden state is continuous and high-
dimensional, and the underlying dynamical process is highly non-linear, but
essentially deterministic. It also deals with situations in which the observations
have lower dimension than the state, and the relationship between states and
observations may be non-linear. The situation occurs in numerous problems in
speech and audio processing, financial data, and instrumentation data, for such

2 Dynamic Factor Graphs for Time Series Modeling

Fig. 1. A simple Dynamical Factor Graph with a 1st order Markovian property, as
used in HMMs and state-space models such as Kalman Filters.

Fig. 2. A Dynamic Factor Graph where dynamics depend on the past two values of
both latent state Z and observed variables Y .

tasks as prediction and source separation. It applies in particular to univariate
chaotic time series which are often the projection of a multidimensional attractor
generated by a multivariate system of nonlinear equations.

The simplest approach to modeling time series relies on time-delay embed-
ding: the model learns to predict one sample from a number of past samples with
a limited temporal span. This method can use linear auto-regressive models, as
well as non-linear ones based on kernel methods (e.g. support-vector regres-
sion [12, 13]), neural networks (including convolutional networks such as time
delay neural networks [6, 17]), and other non-linear regression models. Unfor-
tunately, these approaches have a hard time capturing hidden dynamics with
long-term dependency because the state information is only accessible indirectly
(if at all) through a (possibly very long) sequence of observations [2].

To capture long-term dynamical dependencies, the model must have an in-
ternal state with dynamical constraints that predict the state at a given time
from the states and observations at previous times (e.g. a state-space model).
In general, the dependencies between state and observation variables can be ex-
pressed in the form of a Factor Graph [5] for sequential data, in which a graph
motif is replicated at every time step. An example of such a representation of
a state-space model is shown in Figure 1. Groups of variables (circles) are con-
nected to a factor (square) if a dependency exists between them. The factor can
be expressed in the negative log domain: each factor computes an energy value
that can be interpreted as the negative log likelihood of the configuration of
the variables it connects with. The total energy of the system is the sum of the

Dynamic Factor Graphs for Time Series Modeling 3

factors’ energies, so that the maximum likelihood configuration of variables can
be obtained by minimizing the total energy.

Figure 1 shows the structure used in Hidden Markov Models (HMM) and
Kalman Filters, including Extended Kalman Filters (EKF) which can model
non-linear dynamics. HMMs can capture long-term dependencies, but they are
limited to discrete state spaces. Discretizing the state space of a high-dimensional
continuous dynamical process to make it fit into the HMM framework is often
impractical. Conversely, EKFs deal with continuous state spaces with non-linear
dynamics, but much of the machinery for inference and for training the parame-
ters is linked to the problem of marginalizing over hidden state distributions and
to propagating and estimating the covariances of the state distributions. This
has lead several authors to limit the discussion to dynamics and observation
functions that are linear or radial-basis functions networks [18, 4].

1.2 Dynamical Factor Graphs

By contrast with current state-space methods, our primary interest is to model
processes whose underlying dynamics are essentially deterministic, but can be
highly complex and non-linear. Hence our model will allow the use of complex
functions to predict the state and observations, and will sacrifice the probabilistic
nature of the inference. Instead, our inference process (including during learning)
will produce the most likely (minimum energy) sequence of states given the
observations. We call this method Dynamic Factor Graph (DFG), a natural
extension of Factor Graphs specifically tuned for sequential data.

To model complex dynamics, the proposed model allows the state at a given
time to depend on the states and observations over several past time steps. The
corresponding DFG is depicted in Figure 2. The graph structure is somewhat
similar to that of Taylor and Hinton’s Conditional Restricted Boltzmann Ma-
chine [16]. Ideally, training a CRBM would consist in minimizing the negative
log-likelihood of the data under the model. But computing the gradient of the
log partition function with respect to the parameters is intractable, hence Taylor
and Hinton propose to use a form of the contrastive divergence procedure, which
relies on Monte-Carlo sampling. To avoid costly sampling procedures, we design
the factors in such a way that the partition function is constant, hence the like-
lihood of the data under the model can be maximized by simply minimizing the
average energy with respect to the parameters for the optimal state sequences.
To achieve this, the factors are designed so that the conditional distributions of
state Z(t) given previous states and observation1, and the conditional distribu-
tion of the observation Y (t) given the state Z(t) are both Gaussians with a fixed
covariance.

In a nutshell, the proposed training method is as follows. Given a training
observation sequence, the optimal state sequence is found by minimizing the

1 Throughout the article, Y (t) denotes the value at time t of multivariate time series Y ,
and Yt−1

t−p ≡ {Y (t − t), Y (t − 2), . . . , Y (t − p)} a time window of p samples preceding
the current sample. Z(t) denotes the hidden state at time t.

4 Dynamic Factor Graphs for Time Series Modeling

energy using a gradient-based minimization method. Second, the parameters of
the model are updated using a gradient-based procedure so as to decrease the
energy. These two steps are repeated over all training sequences. The procedure
can be seen as a sort of deterministic generalized EM procedure in which the
latent variable distribution is reduced to its mode, and the model parameters
are optimized with a stochastic gradient method. The procedure assumes that
the factors are differentiable with respect to their input variables and their pa-
rameters. This simple procedure will allow us to use sophisticated non-linear
models for the dynamical and observation factors, such as stacks of non-linear
filter banks (temporal convolutional networks). It is important to note that the
inference procedure operates at the sequence level, and produces the most likely
state sequence that best explains the entire observation. In other words, future
observations may influence previous states.

In the DFG shown in Figure 1, the dynamical factors compute an energy term
of the form Ed(t) = ||Z(t) − f (X(t), Z(t − 1)) ||2, which can seen as modeling
the state Z(t) as f(X(t), Z(t−1)) plus some Gaussian noise variable with a fixed
variance ǫ(t) (inputs X(t) are not used in experiments in this article). Similarly,
the observation factors compute the energy Eo(t) = ||Y (t) − g(Z(t))||2, which
can be interpreted as Y (t) = g (Z(t)) + ω(t), where ω(t) is a Gaussian random
variable with fixed variance.

Our article is organized in three additional sections. First, we explain the
gradient-based approximate algorithm for parameter learning and determinis-
tic latent state inference in the DFG model (2). We then evaluate DFGs on
toy, benchmark and real-world datasets (3). Finally, we compare DFGs to pre-
vious methods for deterministic nonlinear dynamical systems and to training
algorithms for Recurrent Neural Networks (4).

2 Methods

The following subsections detail the deterministic nonlinear (neural networks-
based) or linear architectures of the proposed Dynamic Factor Graph (2.1) and
define the EM-like, gradient-based inference (2.2) and learning (2.4) algorithms,
as well as how DFGs are used for time-series prediction (2.3).

2.1 A Dynamic Factor Graph

Similarly to Hidden Markov Models, our proposed Dynamic Factor Graph con-
tains an observation and a dynamical factors/models (see Figure 1), with corre-
sponding observed outputs and latent variables.

The observation model g links latent variable Z(t) (an m-dimensional vector)
to the observed variable Y (t) (an n-dimensional vector) at time t under Gaussian
noise model ω(t) (because the quadratic observation error is minimized). g can
be nonlinear, but we considered in this article linear observation models, i.e. an
n×m matrix parameterized by a weight vector Wo. This model can be simplified
even further by imposing each observed variable yi(t) of the multivariate time

Dynamic Factor Graphs for Time Series Modeling 5

Fig. 3. Energy-based graph of a DFG with a 1st order Markovian architecture and
additional dynamical dependencies on past observations. Observations Y (t) are inferred
as Y ∗(t) from latent variables Z(t) using the observation model parameterized by Wo.
The (non)linear dynamical model parameterized by Wd produces transitions from a
sequence of latent variables Zt−1

t−p and observed output variables Yt−1

t−p to Z(t) (here
p = 1). The total energy of the configuration of parameters and latent variables is the
sum of the observation Eo(.) and dynamic Ed(.) errors.

series Y to be the sum of k latent variables, with m = k × n, and each latent
variable contributing to only one observed variable. In the general case, the
generative output is defined as:

Y ∗(t) ≡ g (Wo, Z(t)) (1)

Y (t) = Y ∗(t) + ω(t) (2)

In its simplest form, the linear or nonlinear dynamical model f establishes
a causal relationship between a sequence of p latent variables Zt−1

t−p and latent
variable Z(t), under Gaussian noise model ǫ(t) (because the quadratic dynamic
error is minimized). (3) thus defines pth order Markovian dynamics (see Figure
1 where p = 1). The dynamical model is parameterized by vector Wd.

Z∗(t) ≡ f
(

Wd,Z
t−1
t−p

)

(3)

Z(t) = Z∗(t) + ǫ(t) (4)

Typically, one can use simple multivariate autoregressive linear functions to
map the state variables, or can also resort to nonlinear dynamics modeled by
a Convolutional Network [7] with convolutions (FIR filters) across time, as in
Time-Delay Neural Networks [6, 17].

6 Dynamic Factor Graphs for Time Series Modeling

Other dynamical models, different from the Hidden Markov Model, are also
possible. For instance, latent variables Z(t) can depend on a sequence of p past
latent variables Zt−1

t−p and p past observations Yt−1
t−p, using the same error term

ǫ(t), as explained in (5) and illustrated on Figure 2.

Z∗(t) ≡ f
(

Wd,Z
t−1
t−p,Y

t−1
t−p

)

(5)

Z(t) = Z∗(t) + ǫ(t) (6)

Figure 3 displays the interaction between the observation (1) and dynamical
(5) models, the observed Y and latent Z variables, and the quadratic error terms.

2.2 Inference in Dynamic Factor Graphs

Let us define the following total (7), dynamical (8) and observation (9) energies
(quadratic errors) on a given time interval [ta, . . . , tb], where respective weight
coefficients α, β are positive constants (in this article, α = β = 0.5):

E
(

Wd,Wo,Y
tb

ta

)

=

tb
∑

t=ta

[αEd(t) + βEo(t)] (7)

Ed(t) ≡ min
Z

Ed

(

Wd,Z
t−1
t−p, Z(t)

)

(8)

Eo(t) ≡ min
Z

Eo (Wo, Z(t), Y (t)) (9)

Inferring the sequence of latent variables {Z(t)}t in (7) and (8) is equivalent
to simultaneous minimization of the sum of dynamical and observation energies
at all times t:

Ed

(

Wd,Z
t−1
t−p, Z(t)

)

= ||Z∗(t) − Z(t)||22 (10)

Eo (Wo, Z(t), Y (t)) = ||Y ∗(t) − Y (t)||22 (11)

Observation and dynamical errors are expressed separately, either as Nor-
malized Mean Square Errors (NMSE) or Signal-to-Noise Ratio (SNR).

2.3 Prediction in Dynamic Factor Graphs

Assuming fixed parameters W of the DFG, two modalities are possible for the
prediction of unknown observed variables Y .

– Closed-loop (iterated) prediction: when the continuation of the time series is
unknown, the only relevant information comes from the past. One uses the
dynamical model to predict Z∗(t) from Yt−1

t−p and inferred Zt−1
t−p, set Z(t) =

Z∗(t), use the observation model to compute prediction Y ∗(t) from Z(t), and
iterate as long as necessary. If the dynamics depend on past observations,
one also needs to rely on predictions Y ∗(t) in (5).

Dynamic Factor Graphs for Time Series Modeling 7

– Prediction as inference: this is the case when only some elements of Y are un-
known (e.g. estimation of missing motion-capture data). First, one infers la-
tent variables through gradient descent, and simply does not backpropagate
errors from unknown observations. Then, missing values y∗

i (t) are predicted
from corresponding latent variables Z(t).

2.4 Training of Dynamic Factor Graphs

Learning in an DFG consists in adjusting the parameters W =
[

WT
d ,WT

o

]

in

order to minimize the loss L(W,Y, Z̃):

L(W, Y, Z) = E (W, Y) + Rz(Z) + R (W) (12)

Z̃ = argminZL(W̃,Y, Z) (13)

W̃ = argminWL(W,Y, Z̃) (14)

where R(W) is a regularization term on the weights Wd and Wo, and Rz(Z)
represents additional constraints on the latent variables further detailed. Min-
imization of this loss is done iteratively in an Expectation-Maximization-like
fashion in which the states Z play the role of auxiliary variables. During in-
ference, values of the model parameters are clamped and the hidden variables
are relaxed to minimize the energy. The inference described in part (2.2) and
equation (13) can be considered as the E-step (state update) of a gradient-based
version of the EM algorithm. During learning, model parameters W are opti-
mized to give lower energy to the current configuration of hidden and observed
variables. The parameter-adjusting M-step (weight update) described by (14) is
also gradient-based.

In its current implementation, the E-step inference is done by gradient de-
scent on Z, with learning rate ηz typically equal to 0.5. The convergence criterion
is when energy (7) stops decreasing. The M-step parameter learning is imple-
mented as a stochastic gradient descent (diagonal Levenberg-Marquard) [8] with
individual learning rates per weight (re-evaluated every 10000 weight updates)
and global learning rate ηw typically equal to 0.01. These parameters were found
by trial and error on a grid of possible values.

The state inference is not done on the full sequence at once, but on mini-
batches (typically 20 to 100 samples), and the weights get updated once after
each mini-batch inference, similarly to the Generalized EM algorithm. During
one epoch of training, the batches are selected randomly and overlap in such a
way that each state variable Z(t) is re-inferred at least a dozen times in different
mini-batches. This learning approximation echoes the one in regular stochastic
gradient with no latent variables and enables to speed up the learning of the
weight parameters.

The learning algorithm turns out to be particularly simple and flexible. The
hidden state inference is however under-constrained, because of the higher di-
mensionality of the latent states and despite the dynamical model. For this rea-

8 Dynamic Factor Graphs for Time Series Modeling

son, this article proposes to (in)directly regularize the hidden states in several
ways.

First, one can add to the loss function an L1 regularization term R(W) on the
weight parameters. This way, the dynamical model becomes “sparse” in terms
of its inputs, e.g. the latent states. Regarding the term Rz(Z), an L2 norm on
the hidden states Z(t) limits their overall magnitude, and an L1 norm enforces
their sparsity both in time and across dimensions. Respective regularization
coefficients λw and λz typically range from 0 to 0.1.

2.5 Smoothness Penalty on Latent Variables

The second type of constraints on the latent variables is the smoothness penalty.
In an apparent contradiction with the dynamical model (3), this penalty forces
two consecutive variables zi(t) and zi(t + 1) to be similar. One can view it as an
attempt at inferring slowly varying hidden states and at reducing noise in the
states (which is particularly relevant when observation Y is sampled at a high
frequency). By consequence, the dynamics of the latent states are smoother and
simpler to learn. Constraint (15) is easy to derivate w.r.t. a state zi(t) and to
integrate into the gradient descent optimization (13):

Rz

(

Zt+1
t

)

=
∑

i

(zi(t) − zi(t + 1))2 (15)

In addition to the smoothness penalty, we have investigated the decorrelation
of multivariate latent variables Z(t) = (z1(t), z2(t), . . . , zm(t)). The justification
was to impose to each component zi to be independent, so that it followed its
own dynamics, but we have not obtained satisfactory results yet. As reported in
the next section, the interaction of the dynamical model, weight sparsification
and smoothness penalty already enables the separation of latent variables.

3 Experimental Evaluation

First, working on toy problems, we investigate the latent variables that are in-
ferred from an observed time series. We show that using smoothing regularizers,
DFGs are able to perfectly separate a mixture of independent oscillatory sources
(3.1), as well as to reconstruct the Lorenz chaotic attractor in the inferred state
space (3.2). Secondly, we apply DFGs to two time series prediction and mod-
eling problems. Subsection (3.3) details how DFGs outperform the best known
algorithm on the CATS competition benchmark for time series prediction. In
(3.4) we reconstruct realistic missing human motion capture marker data in a
walk sequence.

3.1 Asynchronous Superimposed Sine Waves

The goal is to model a time series constituted by a sum of 5 asynchronous
sinusoids: y(t) =

∑5

j=1
sin(λjt) (see Fig. 4a). Each component xj(t) can be

Dynamic Factor Graphs for Time Series Modeling 9

Fig. 4. (a) Superposition of five asynchronous sinusoids: y(t) =
P

5

j=1
sin(λjt) where

λ1 = 0.2, λ2 = 0.311, λ3 = 0.42, λ4 = 0.51 and λ5 = 0.74. Spectrum analysis shows
that after learning and inference, each reconstructed state zi isolates only one of the
original sources xj , both on the training (b) and testing (c) datasets.

considered as a “source”, and y(t) is a mixture. This problem has previously been
tackled by employing Long-Short Term Memory (LSTM), a special architecture
of Recurrent Neural Networks that needs to be trained by genetic optimization
[19].

After EM training and inference of hidden variables Z(t) of dimension m = 5,
frequency analysis of the inferred states on the training (Fig. 4b) and testing (Fig.
4c) datasets showed that each latent state zi(t) reconstructed one individual
sinusoid. In other words, the 5 original sources from the observation mixture
y(t) were inferred on the 5 latent states. The observation SNR of 64dB, and
the dynamical SNR of 54dB, on both the training and testing datasets, proved
both that the dynamics of the original time series y(t) were almost perfectly
reconstructed. DFGs outperformed LSTMs on that task since the multi-step
iterated (closed-loop) prediction of DFG did not decrease in SNR even after
thousands of iterations, contrary to [19] where a reduction in SNR was already
observed after around 700 iterations.

As architecture for the dynamical model, 5 independent Finite Impulse Re-
sponse (FIR) filters of order 25 were chosen to model the state transitions: each
of them acts as a band-pass filter and models an oscillator at a given frequency.
One can hypothesize that the smoothness penalty (15), weighted by a small co-
efficient of 0.01 in the state regularization term Rz(Z) helped shape the hidden
states into perfect sinusoids. Note that the states or sources were made inde-
pendent by employing five independent dynamical models for each state. This
specific usage of DFG can be likened to Blind Source Separation from an unique
source, and the use of independent filters for the latent states (or sources) echoes
the approach of BSS using linear predictability and adaptive band-pass filters.

3.2 Lorenz Chaotic Data

As a second application, we considered the 3-variable (x1, x2, x3) Lorenz dy-
namical system [11] generated by parameters ρ = 16, b = 4, r = 45.92 as in

10 Dynamic Factor Graphs for Time Series Modeling

Fig. 5. Lorenz chaotic attractor (left) and the reconstructed chaotic attractor from the
latent variables Z(t) = {z1(t), z2(t), z3(t)} after inference on the testing dataset (right).

Table 1. Comparison of 1-step prediction error using Support Vector Regression, with
the errors of the dynamical and observation models of DFGs, measured on the Lorenz
test dataset and expressed as signal-to-noise ratios.

Architecture SVR DFG

Dynamic SNR 41.6 dB 46.2 dB

Observation SNR - 31.6 dB

[12] (see Fig. 5a). Observations consisted in one-dimensional time series y(t) =
∑3

j=1
xj(t).

The DFG was trained on 50s (2000 samples) and evaluated on the following
40s (1600 samples) of y. Latent variables Z(t) = (z1(t), z2(t), z3(t)) had dimen-
sion m = 3, as it was greater than the attractor correlation dimension of 2.06 and
equal to the number of explicit variables (sources). The dynamical model was
implemented as a 3-layered convolutional network. The first layer contained 12
convolutional filters covering 3 time steps and one latent component, replicated
on all latent components and every 2 time samples. The second layer contained
12 filters covering 3 time steps and all previous hidden units, and the last layer
was fully connected to the previous 12 hidden units and 3 time steps. The dy-
namical model was autoregressive on p = 11 past values of Z, with a total of
571 unique parameters. “Smooth” consecutive states were enforced (15), thanks
to the state regularization term Rz(Z) weighted by a small coefficient of 0.01.
After training the parameters of DFG, latent variables Z were inferred on the
full length of the training and testing dataset, and plotted in 3D values of triplets
(z1(t), z2(t), z3(t)) (see Fig. 5b).

The 1-step dynamical SNR obtained with a training set of 2000 samples was
higher than the 1-step prediction SNR reported for Support Vector Regression
(SVR) [12] (see Table 1). According to the Takens theorem [15], it is possible to

Dynamic Factor Graphs for Time Series Modeling 11

Table 2. Prediction results on the CATS competition dataset comparing the best
algorithm (Kalman Smoothers [14]) and Dynamic Factor Graphs. E1 and E2 are un-
normalized MSE, measured respectively on all five missing segments or on the first four
missing segments.

Architecture Kalman smoother DFG

E1 (5 segments) 408 390
E2 (4 segments) 346 288

reconstruct an unknown (hidden) chaotic attractor from an adequately long win-
dow of observed variables, using time-delay embedding on y(t), but we managed
to reconstruct this attractor on the latent states (z1(t), z2(t), z3(t)) inferred both
from the training or testing datasets (Fig. 5). Although one of the “wings” of
the reconstructed butterfly-shaped attractor is slightly twisted, one can clearly
distinguish two basins of attraction and a chaotic orbit switching between one
and the other. The reconstructed latent attractor has correlation dimensions
1.89 (training dataset) and 1.88 (test dataset).

3.3 CATS Time Series Competition

Dynamic Factor Graphs were evaluated on time series prediction problems using
the CATS benchmark dataset [9]. The goal of the competition was the prediction
of 100 missing values divided into five groups of 20, the last group being at the
end of the provided time series. The dataset presented a noisy and chaotic be-
haviour commonly observed in financial time series such as stock market prices.

In order to predict the missing values, the DFG was trained for 10 epochs
on the known data (5 chunks of 980 points each). 5-dimensional latent states on
the full 5000 point test time series were then inferred in one E-step, as described
in section 2.3. The dynamical factor was the same as in section 3.2. As shown
in Table 2, the DFG outperformed the best results obtained at the time of the
competition, using a Kalman Smoother [14], and managed to approximate the
behavior of the time series in the missing segments.

3.4 Estimation of Missing Motion Capture Data

Finally, DFGs were applied to the problem of estimating missing motion capture
data. Such situations can arise when “the motion capture process [is] adversely
affected by lighting and environmental effects, as well as noise during recording”
[16]. Motion capture data2 Y consisted of three 49-dimensional time series rep-
resenting joint angles derived from 17 markers and coccyx, acquired on a subject
walking and turning, and downsampled to 30Hz. Two sequences of 438 and 3128
samples were used for training, and one sequence of 260 samples for testing.

2 We used motion capture data from the MIT database as well as sample Matlab code
for motion playback and conversion, developped or adapted by Taylor, Hinton and
Roweis, available at: http://www.cs.toronto.edu/∼gwtaylor/.

12 Dynamic Factor Graphs for Time Series Modeling

Table 3. Reconstruction error (NMSE) for 4 sets of missing joint angles from motion
capture data (two blocks of 65 consecutive frames, about 2s, on either the left leg or
entire upper body). DFGs are compared to standard nearest neighbors matching.

Method Nearest Neighb. DFG

Missing leg 1 0.77 0.59
Missing leg 2 0.47 0.39
Missing upper body 1 1.24 0.9
Missing upper body 2 0.8 0.48

We reproduced the experiments from [16], where Conditional Restricted
Boltzman Machines (CRBM) were utilized. On the test sequence, two differ-
ent sets of joint angles were erased, either the left leg (1) or the entire upper
body (2). After training the DFG on the training sequences, missing joint angles
yi(t) were inferred through the E-step inference. The DFG was the same as in
sections 3.2 and 3.3, but with 147 hidden variables (3 per observed variable)
and no smoothing. Table 3 shows that DFGs significantly outperformed near-
est neighbor interpolation (detailed in [16]), by taking advantage of the motion
dynamics modeled through dynamics on latent variables. Contrary to nearest
neighbors matching, DFGs managed to infer smooth and realistic leg or upper
body motion. Videos comparing the original walking motion sequence, and the
DFG- and nearest neighbor-based reconstructions are available at
http://cs.nyu.edu/∼mirowski/pub/mocap/. Figure 6 illustrates the DFG-based
reconstruction (we did not include nearest neighbor interpolation resuts because
the reconstructed motion was significantly more “hashed” and discontinuous).

4 Discussion

In this section, we establish a comparison with other nonlinear dynamical sys-
tems with latent variables (4.1) and suggest that DFGs could be seen as an
alternative method for training Recurrent Neural Networks (4.2).

4.1 Comparison with Other Nonlinear Dynamical Systems with

Latent States

An earlier model of nonlinear dynamical system with hidden states is the Hid-
den Control Neural Network [10], where latent variables Z(t) are added as an
additional input to the dynamical model on the observations. Although the dy-
namical model is stationary, the latent variable Z(t) modulates its dynamics,
enabling a behavior more complex than in pure autoregressive systems. The
training algorithm iteratively optimizes the weights W of the Time-Delay Neu-
ral Network (TDNN) and latent variables Z, inferred as
Z̃ ≡ argminZ

∑

t ||Y (t) − f
W̃

(Y (t − 1), Z) ||2.
The latter algorithm is likened to approximate maximum likelihood estima-

tion, and iteratively finds a sequence of dynamic-modulating latent variables and

Dynamic Factor Graphs for Time Series Modeling 13

learns dynamics on observed variables. DFGs are more general, as they allow the
latent variables Z(t) not only to modulate the dynamics of observed variables,
but also to generate the observations Y (t), as in DBNs. Moreover, [10] does
not introduce dynamics between the latent variables themselves, whereas DFGs
model complex nonlinear dynamics where hidden states Z(t) depend on past
states Yt−1

t−p and observations Zt−1
t−p. Because our method benefits from highly

complex non-linear dynamical factors, implemented as multi-stage temporal con-
volutional networks, it differs from other latent states and parameters estimation
techniques, which generally rely on radial-basis functions [18, 4].

The DFG introduced in this article also differs from another, more recent,
model of DBN with deterministic nonlinear dynamics and explicit inference of
latent variables. In [1], the hidden state inference is done by message passing
in the forward direction only, whereas our method suggests hidden state infer-
ence as an iterative relaxation, i.e. a forward-backward message passing until
“equilibrium”.

In a limit case, DFGs could be restricted to a deterministic latent variable
generation process like in [1]. One can indeed interpret the dynamical factor as
hard constraints, rather than as an energy function. This can be done by setting
the dynamical weight α to be much larger than the observation weight β in (7).

4.2 An Alternative Inference and Learning for Recurrent Neural

Networks

An alternative way to model long-term dependencies is to use recurrent neural
networks (RNN). The main difference with the proposed DFG model is that
RNN use fully deterministic noiseless mappings for the state dynamics and the
observations. Hence, there is no other inference procedure than running the net-
work forward in time. Unlike with DFG, the state at time t is fully determined
by the previous observations and states, and does not depend on future obser-
vations.

Exact gradient descent learning algorithms for Recurrent Neural Networks
(RNN), such as Backpropagation Through Time (BPTT) or Real-Time Recur-
rent Learning (RTRL) [20], have limitations. The well-known problem of van-
ishing gradients is responsible for RNN to forget, during training, outputs or
activations that are more than a dozen time steps back in time [2]. This is not
an issue for DFG because the inference algorithm effectively computes “virtual
targets” for the function f at every time step.

The faster of the two algorithms, BPTT, requires O (T |W|) weight updates
per training epoch, where |W| is the number of parameters and T the length of
the training sequence. The proposed EM-like procedure, which is dominated by
the E-step, requires O (aT |W|) operations per training epoch, where a is the
average number of E-step gradient descent steps before convergence (a few to a
few dozens if the state learning rate is set properly).

Moreover, because the E-step optimization of hidden variables is done on
mini-batches, longer sequences T simply provide with more training examples

14 Dynamic Factor Graphs for Time Series Modeling

and thus facilitate learning; the increase in computational complexity is linear
with T .

5 Conclusion

This article introduces a new method for learning deterministic nonlinear dynam-
ical systems with highly complex dynamics. Our approximate training method
is gradient-based and can be likened to Generalized Expectation-Maximization.

We have shown that with proper smoothness constraints on the inferred la-
tent variables, Dynamical Factor Graphs manage to perfectly reconstruct multi-
ple oscillatory sources or a multivariate chaotic attractor from an observed one-
dimensional time series. DFGs also outperform Kalman Smoothers and other
neural network techniques on a chaotic time series prediction tasks, the CATS
competition benchmark. Finally, DFGs can be used for the estimation of miss-
ing motion capture data. Proper regularization such as smoothness or a sparsity
penalty on the parameters enable to avoid trivial solutions for high-dimensional
latent variables. We are now investigating the applicability of DFG to learning
genetic regulatory networks from protein expression levels with missing values.

Acknowledgments. The authors wish to thank Marc’Aurelio Ranzato for fruit-
ful discussions and Graham Williams for his feedback and dataset.

References

1. Barber, D.: Dynamic bayesian networks with deterministic latent tables. In: Ad-
vances in Neural Information Processing Systems NIPS’03, pp. 729–736. MIT Press,
Cambridge MA (2003)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 5, 157–166 (1994)

3. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38 (1977)

4. Ghahramani, Z., Roweis, S.: Learning nonlinear dynamical systems using an EM
algorithm. In: Advances in Neural Information Processing Systems NIPS’99. Morgan
Kaufmann, MIT Press, Cambridge MA (1999)

5. Kschischang, F., Frey, B., H.-A., L.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory 47, 498–519 (2001)

6. Lang, K., Hinton, G.: The development of the time-delay neural network archi-
tecture for speech recognition. Technical Report CMU-CS-88-152, Carnegie-Mellon
University (1988)

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278–2324 (1998a)

8. LeCun, Y., Bottou, L., Orr, G., Muller, K.: Efficient backprop. Lecture Notes in
Computer Science. Berlin/Heidelberg: Springer. (1998b)

9. Lendasse, A., Oja, E., Simula, O.: Time series prediction competition: The CATS
benchmark. In: Proceedings of IEEE International Joint Conference on Neural Net-
works IJCNN, pp. 1615–1620 (2004)

Dynamic Factor Graphs for Time Series Modeling 15

10. Levin, E.: Hidden control neural architecture modeling of nonlinear time-varying
systems and its applications. IEEE Transactions on Neural Networks 4, 109–116
(1993)

11. Lorenz, E.: Deterministic nonperiodic flow. Journal of Atmospheric Sciences 20,
130–141 (1963)

12. Mattera, D., Haykin, S.: Support vector machines for dynamic reconstruction of
a chaotic system. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds) Advances in
Kernel Methods: Support Vector Learning, 212–239. MIT Press, Cambridge MA
(1999)

13. Muller, K., Smola, A., Ratsch, G., Scholkopf, B., Kohlmorgen, J., Vapnik, V.:
Using support vector machines for time-series prediction. In: Scholkopf, B., Burges,
C.J.C., Smola, A.J. (eds) Advances in Kernel Methods: Support Vector Learning,
212–239. MIT Press, Cambridge MA (1999)

14. Sarkka, S., Vehtari, A., Lampinen, J.: Time series prediction by kalman smoother
with crossvalidated noise density. In: Proceedings of IEEE International Joint Con-
ference on Neural Networks IJCNN, pp. 1653–1657 (2004)

15. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Mathe-
matics 898, 336–381 (1981)

16. Taylor, G., Hinton, G., Roweis, S.: Modeling human motion using binary latent
variables. In: Advances in Neural Information Processing Systems NIPS’06. Morgan
Kaufmann, MIT Press, Cambridge MA (2006)

17. Wan, E.: Time series prediction by using a connectionist network with internal
delay lines. In: Weigend, A.S., Gershenfeld, N.A. (eds) Time Series Prediction: Fore-
casting the Future and Understanding the Past, 195–217. Addison-Wesley, Reading
MA (1993)

18. Wan, E., Nelson, A.: Dual kalman filtering methods for nonlinear prediction, es-
timation, and smoothing. In: Advances in Neural Information Processing Systems
(1996)

19. Wierstra, D., Gomez, F., Schmidhuber, J.: Modeling systems with internal state
using Evolino. In: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, pp. 1795–2005 (2005)

20. Williams, R., Zipser, D.: Gradient-based learning algorithms for recurrent networks
and their computational complexity. In: Backpropagation: Theory, Architectures
and Applications, 433–486. Lawrence Erlbaum Associates (1995)

16 Dynamic Factor Graphs for Time Series Modeling

Fig. 6. Application of a DFG for the reconstruction of missing joint angles from motion
capture marker data (1 test sequence of 260 frames at 30Hz). 4 sets of joint angles were
alternatively “missing” (erased from the test data): 2 sequences of 65 frames, of either
left leg or the entire upper body. (a) Subsequence of 65 frames at the beginning of
the test data. (b) Reconstruction result after erasing the left leg markers from (a).
(c) Reconstruction results after erasing the entire upper body markers from (a). (d)
Subsequence of 65 frames towards the end of the test data. (e) Reconstruction result
after erasing the left leg markers from (d). (f) Reconstruction results after erasing the
entire upper body markers from (d).

