
NeuFlow: Dataflow Vision Processing
System-on-a-Chip

Phi-Hung Pham∗, Darko Jelaca∗, Clement Farabet†, Berin Martini∗, Yann LeCun† and Eugenio Culurciello∗
∗ Purdue University, West Lafayette, Indiana

† New York University, NY

Email: {phamp,euge}@purdue.edu

Abstract—This paper presents neuFlow system-on-a-chip - a
neuromorphic vision system-on-a-chip implemented in the IBM
45 nm SOI process. The neuFlow processor was designed to
accelerate neural networks and other complex vision algorithms
based on large numbers of convolutions and matrix-to-matrix
operations. Post-layout characterization shows that the system
delivers up to 160 GOPS with an average power consumption
of 570 mW. The power-efficiency and portability of this system
is ideal for embedded vision-based devices, such as driver
assistance, and robotic vision.

I. INTRODUCTION

Driving a car is still a dangerous and time-consuming task.
The average driver in the United States drives more than
10 thousand kilometers per year, with similar numbers for
rich countries. This corresponds to 300 hours a year spent
driving at speeds of 30-35 Km/h, and a monetary potential
loss of productivity of 15,000$ per year. In addition driving a
car is dangerous, because human drivers often get distracted
while driving. The United States National Highway Traffic
Safety Administration (NHTSA) counted 32 thousand severe
accidents in 2010. 80% of car crashes are due to distractions,
again according to the NHTSA. The design of technology
that can lower these numbers is clearly a potentially trans-
formative use of technology, and compares to the design of
medical technologies in life-saving and quality-of-life potential
improvements.

Electronics for car driver assistance is slowly becoming
available for high-end cars [1]. These devices, generally re-
ferred as advanced driver assistance systems, can alert a driver
of a dangerous condition, as an undesired lane-change, an
undetected crossing pedestrian, traffic sign, etc. These devices
are a great step forward to avoid distractions, but they still
rely on human intervention and control of the vehicle. In
this work, we discuss a neuromorphic vision system for car
driving assistance. We focus here on vision-based systems
because active laser system are not yet able to solve interfering
problems, beside their high cost and large power requirements.
We do not consider these to be viable commercial solutions
to autonomous driving, even they have been successful in the
recent Google autonomous car and DARPA competitions.

Being able to navigate a vehicle on the road requires very
complex visual capabilities. Unfortunately, the unstructured
nature of the road and the variability of its appearance in var-
ious environmental conditions and terrains makes the simple

problem of detecting the road quite complex. What needed is
a general-purpose vision system capable of identifying a large
number of objects. This vision system needs to be able to:

• extract visual features from different objects (categoriza-
tion/memory and segmentation),

• track changing object features (tracking), extract depth
features (categorization of traversability of road), navi-
gation, learning of object relationships (statistics of the
visual world, object relationships, laws of the visual
world),

• compress category information in a logarithmic manner,
thus growing only slightly computational and architec-
tural requirements for a linear increase in number of
categories required.

• Also, the device must meet real-time requirement of
frame process, flexible for vision task development, and
power-efficiency for being embedded even “behind the
car’s rearview mirror”.

These computations can only be done with a hierarchical
(logarithmic) architecture with multiple stages of processing
in series [2]. Simple feature-extraction stages are not enough
to be able to scale to the requirements. Convolutional Neural
Networks (ConvNets) implement a vision architecture that
solves all these problems in a single elegant solution [3],
and are the computational core of the neuFlow processor
implemented in 45nm SOI process presented in this paper.

The rest of paper is organized as follows. Section II de-
scribes the architecture and operation of neuFlow system-on-
a-chip (SoC). A compiler framework for quick development
of vision tasks is also introduced. In Section III, a design and
implementation results of neuFlow processor in IBM 45nm
SOI process is reported. This section also gives a performance
comparison of the chip with other conventional platforms im-
plementing ConvNet-based visual models. Finally, section IV
concludes the paper and outlines our further researches.

II. NEUFLOW ARCHITECTURE AND OPERATION

ConvNets is a deep learning hierarchical artificial vision
model which uses large number of convolutions to process im-
age frames into a set of features and decisions. To implement
ConvNets in real-time embedded systems, several architectural
issues need to be considered:



• First, the system must be able to adapt to arbitrary
data-flow graphs, which typically occurs in “systolic”
computing systems [4] due to high-level parallelism.

• Second, the system must quickly reconfigure to meet the
run-time change of data-flow graphs occurring during
application execution under a profiling from high-level
compiler. Hence, the need of a dynamically reconfigura-
tion system [5] is mandatory.

The neuFlow [3] processor, its architecture and development
tools, were developed with these considerations.

A. NeuFlow Architecture

Figure 1 reports the neuFlow architecture [6], which is
designed to accelerate data stream ConvNets computation. The
architecture has several key components: Calculator, Streamer
and Flow-cpu.

The Calculator consists of a 2D grid of NPT Processing
Tiles (PTs). Each PT contains a bank of processing oper-
ators and a multiplexer (MUX) based on-chip router. This
grid-based architecture interconnected by an on-chip network
is considered as the architecture of interest due to several
reasons. First, the coarse-grained property of PT enables a
low configuration overhead compared to FPGA approach,
meanwhile it has advantage of programming flexibility of
general-purpose processors. Second, the use of on-chip net-
work can flexibly adapt the system to accelerate arbitrary
dataflow graphs formed during the application execution [7].
The bank of processing operators is highly optimized for
ConvNets computation. A processing operator can be a term-
by-term streaming operator (MUL, DIV, ADD, SUB, MAX),
a MAC-based full 1/2D parallel convolver, a configurable
bank of FIFOs for stream buffering, a configurable piece-
wise linear or quadratic mapper. These operators are locally
connected to each other, and/or to global data wires and
neighbor tiles through an on-chip network of MUX-based
routers. The on-chip network, once being configured, will form

Fig. 1. The neuFlow architecture

Fig. 2. An example of the grid configured for a dataflow computation: the 3
top tiles perform a 3× 3 convolution, the 3 intermediate tiles another 3× 3
convolution, the bottom left tile sums these two convolutions, and the bottom
central tile applies a function to the result.

the configurable paths to support streaming dataflow graphs at
runtime.

The Streamer functions as a Smart Direct Memory Access
module (Smart DMA), which interfaces with off-chip mem-
ory and provides asynchronous data transfers with priority
management. The Smart DMA module is customized to allow
NDMA ports to fully access the external memory. The DMA
is considered to be ”smart”, because it can be configured to
read or write a particular chunk of data, with an optional stride
(for 2D streams), and feedbacks its status to Flow-cpu.

The Flow-cpu works as a central Control Unit that can re-
configure the computing grid and the Smart DMA at runtime.
The configuration data from Flow-cpu placed on a Runtime
Configuration Bus (re-)configures most aspects of the grid
at runtime, including connections, operators and Smart DMA
modes.

B. Operation

An execution on neuFlow typically has the following steps:
(1) the Control Unit configures each tile to be used for the
computation and each connection between the tiles and their
neighbors and/or the global lines, by sending a configuration
command to each of them, (2) it configures the Smart DMA
to prefetch the data to be processed, and to be ready to write
results back to off-chip memory, (3) when the DMA is ready, it
triggers the streaming out, (4) each tile processes its respective
incoming streaming data, and passes the results to another tile,
or back to the Smart DMA, (5) the control unit is notified of
the end of operations when the Smart DMA has completed.

The computing grid interconnected by the on-chip network
can perform arbitrary computations on streams of data, from
plain unary operations to complex nested operations. By a
networking of MUX-based routers, operators can be easily
cascaded and connected across tiles, independently managing
their flow by the use of input/output FIFOs. As illustrated in



Fig. 3. A ConvNet implemented on neuFlow functionally prototyped in
FPGA capable of performing real-time street scene parser.

Figure 2, the network-based grid is configured for dataflow
computation of a sum of two convolutions followed by a non-
linear activation function.

C. Compiler and Application Development

Prior to being executed on neuFlow, a given ConvNet algo-
rithm has to be converted to a representation that can be inter-
preted by the Control Unit to generate controls/configurations
for the system. For that purpose, a compiler and dataflow
API—luaFlow [3]—are created. LuaFlow is a full-blown com-
piler that takes sequential, tree-like or flow-graph descriptions
of algorithms in the Torch [8] environment, and parses them
to extract different levels of parallelism. Pattern matching is
used to map known sequences of operations to low-level, pre-
optimized routines. Other unknown operators are mapped in
less optimized ways. Once each high-level module has been
associated with a set of low-level operations, a static sequence
of grid configurations, interspersed with DMA transfers is
produced, and dumped as binary code for the embedded
Control Unit.

Street scene parser is an essential task for car driving as-
sistance. This application aims at segmenting and recognizing
the content of a scene: from objects to large structures. e.g.,
roads, sky, buildings, cars, etc (see Figure 3). In other words,
the goal is to map each pixel from a given input image to
a unique label. We use the ConvNet for street-scene parser
presented in [6] for a 500×375 input image. Once trained, the
network is passed over to luaFlow, and transparently mapped
to neuFlow. A key advantage of convolutional networks is that
they can be applied to sliding windows on a large image at very
low cost by simply computing convolutions at each layer over
the entire image . The output layer is replicated accordingly,
producing one detection score for every 92 × 92 window on
the input, spaced every 4 pixels. The neuFlow is functionally
prototyped in FPGAs and predicted to produce one image in
83ms with an average error of 10−2 (quantization noise). For
more details of street scene parsing application, please refer
to [6].

III. DESIGN AND IMPLEMENTATION

A. Testchip Design

The NeuFlow SoC consists of one calculator configured
with 4 convolvers with up to 10 x 10 kernels. A smart
DMA is used for off-chip memory communication to QDR.
The chip includes a programmable PLL, one Ethernet in-
terface for Flow-cpu’s off-chip communication, GPIO and
UART interfaces for debug/testing purposes. The neuFlow
hardware is coded in Verilog HDL and prototyped in FPGA
for functionality validation [3]. The design is synthesized and
implemented in IBM 45 nm SOI STD-cell technology using
a digital design flow based on Synopsys tools. The design
flow features a Multi-Corner/Multi-Mode implementation with
Multi-Vt STD-cells for a better design closure and power
optimization. The chip uses area-array pads for packaging with
flip-chip technology. The choice of flip-chip packaging has
advantages over conventional wire-bond packages due to its
small size, high performance, high pin-count and low cost per
connections.

B. Implementation Results

The average power consumption of the implemented chip
is estimated to be 570 mW under a system clock of 400 MHz
and 1 V Vcore.

Figure 4 reports the area utilization of the IBM neuFLow.
The Flow-cpu occupies only around 9% of chip area. Mean-
while the Streamer and Calculator occupy 23% and 31% of
the chip area, respectively. The rest 37% chip area is used for
flip-chip I/O drives, decoupling capacitances and PLL.

Figure 5 shows the power breakdown estimated from post-
layout tools with parasitic back annotation. The Flow-cpu and
Streamer consume 7% and 27% of total chip power, respec-
tively. Meanwhile, Calculator, which is the most computation-
dominant component in the processor, consumes up to 46% of
total chip power. The clock distribution network is estimated
to consume around 21% of the chip power.

Table I summarizes the chip specifications. The neuFlow
die area is 12.5 mm2, and is shown in Figure 6.

Fig. 4. Chip area breakdown



Fig. 5. Chip power breakdown estimation

TABLE I
POST-LAYOUT CHIP SUMMARY

Process IBM SOI 45nm

Chip area 2.5 x 5 mm2

Supply Voltages 1V Vcore, 1.8V and 3.3V VI/O

Target frequency 400MHz

Estimated average power 570mW

Peak performance 160 GOPS

GOPs per Watt ∼ 254

Number of transistors, memo-
ries, etc.

23.6 million transistors and 75KB
2-port RAM

Pin count 317 (299 I/Os and 18 P/Gs)

Packaging Flip-chip

C. Performance Comparison

Table II reports the performance comparison for a typical
ConvNets computation implemented in various platforms. The
CPU data is measured from compiled C code (GNU C
compiler and Blas libraries) on a Core 2 Duo 2.66 GHz Apple
Macbook PRO laptop operating at 90 W (30 W for the CPU).
The mGPU and GPU data are obtained from a CUDA-based
implementation running on a laptop/mobile nVidia GT335m
operating at 1 GHz and 30 W and on a nVidia GTX480
operating at 1 GHz and 220 W. The FPGA performance was

Fig. 6. Chip layout in a 2.5 x 5mm2 die area

TABLE II
PERFORMANCE COMPARISON

CPU1 mGPU2 GPU3 neuV64 neuIBM5

Peak GOPs 10 182 1350 160 160
Real GOPs 1.1 54 294 147 147
Power (W) 30 30 220 10 0.579
GOPs/W 0.04 1.8 1.34 14.7 254
1 CPU: Intel DuoCore, 2.7GHz, optimized C code
2-3 mGPU, GPU: a mobile Nvidia GT335m and a high-end GTX480
4 neuV6: neuFlow prototyped Xilinx Virtex 6 FPGA
5 neuIBM: 45nm IBM SOI process neuFlow (this work)

measured on a Xilinx Virtex-6 VLX240T operating at 200
MHz and 10 W [3]. The SoC characteristics are estimated
from post-layout chip implemented in IBM 45 nm SOI process
at a target frequency of 400 MHz.

As denoted in Table II, the neuFlow ASIC chip offers a peak
performance of 160 GOPs, which satisfies the real-time com-
putation requirement of many driving assistance vision tasks
typically ranged from 60 to 120 GOPs [6]. Particularly, the
chip power efficiency of 254 GOPS/W enables development
of vision tasks in embedded systems.

IV. CONCLUSION

This paper presented the neuFlow system-on-a-chip archi-
tecture and its IBM 45 nm implementation. The neuFlow
SoC is highly optimized for vision tasks in car navigation.
Implementation result in IBM 45nm SOI process shows a high
power efficiency of the chip, which can be easily to develop
embedded applications for car driving assistance. Future works
will extend the computation capacity of the systems and
develop turnkey vision applications for driving assistance in a
post-silicon prototype.

ACKNOWLEDGMENT

This work was partially supported by NSF award 0901742
and ONR award N000141110287. We would like to thank
TAPO (www.tapoffice.org) for the chip tape-out.

REFERENCES

[1] Mobileye. [Online]. Available: http://www.mobileye.com
[2] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best

multi-stage architecture for object recognition?” in Proc. International
Conference on Computer Vision (ICCV’09). IEEE, 2009.

[3] Neuflow. [Online]. Available: http://www.neuflow.org
[4] M. H. Cho, C.-C. Cheng, M. Kinsy, G. E. Suh, and S. Devadas, “Diastolic

arrays: throughput-driven reconfigurable computing,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2008, pp. 457–464.

[5] M. Platzner, J. Teich, and N. Wehn, Dynamically Reconfigurable Systems:
Architectures, Design Methods and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2010.

[6] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,”
in Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
IEEE Computer Society Conference on, june 2011, pp. 109 –116.

[7] P.-H. Pham, P. Mau, J. Kim, and C. Kim, “An on-chip network fabric
supporting coarse-grained processor array,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 10.1109/TVLSI.2011.2181546
(in press).

[8] R. Collobert, “Torch,” presented at the Workshop on Machine Learning
Open Source Software, NIPS, 2008.


