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Abstract

We classify digits of real-world house numbers us-

ing convolutional neural networks (ConvNets). Con-

vNets are hierarchical feature learning neural net-

works whose structure is biologically inspired. Un-

like many popular vision approaches that are hand-

designed, ConvNets can automatically learn a unique

set of features optimized for a given task. We aug-

mented the traditional ConvNet architecture by learning

multi-stage features and by using Lp pooling and estab-

lish a new state-of-the-art of 95.10% accuracy on the

SVHN dataset (48% error improvement). Furthermore,

we analyze the benefits of different pooling methods and

multi-stage features in ConvNets. The source code and

a tutorial are available at eblearn.sf.net.

1. Introduction

Character recognition in documents can be consid-

ered a solved task for computer vision, whether hand-

written or typed. It is however a harder problem in

the context of complex natural scenes like photographs

where the best current methods lag behind human per-

formance, mainly due to non-contrasting backgrounds,

low resolution, de-focused and motion-blurred images

and large illumination differences (Figure 1).

[9] recently introduced a new digit classification

dataset of house numbers extracted from street level

images. It is similar in format to the popular MNIST

dataset[8] (10 digits, 32x32 inputs), but an order of

magnitude bigger (600,000 labeled digits), contains

color information and various natural backgrounds.

Previous approaches in classifying characters and

digits from natural images used multiple hand-crafted

features [3] and template-matching [15]. In contrast,

ConvNets learn features all the way from pixels to the

classifier. [9] demonstrated the superiority of learned

features over hand-designed ones. Such superiority

Figure 1. 32x32 cropped samples from the classifi-

cation task of the SVHN dataset. Each sample is as-

signed only a single digit label (0 to 9) corresponding

to the center digit.

was also previously shown among others in a traffic

sign classification challenge [14] where two indepen-

dent teams obtained the best performance against vari-

ous other approaches using ConvNets [12, 2]. [9] also

show superior results with unsupervised learning, we

however only report results with fully-supervised train-

ing. We obtain a 4.5 points improvement in accuracy

(with 95.10% accuracy) over the previous state-of-the-

art of 90.6%. We use the traditional ConvNet archi-

tecture augmented with different pooling methods and

with multi-stage features [12]. This work was imple-

mented with the EBLearn 1 C++ open-source frame-

work [11].

1http://eblearn.sf.net



2 Architecture

The ConvNet architecture is composed of repeatedly

stacked feature stages. Each stage contains a convolu-

tion module, followed by a pooling/subsampling mod-

ule and a normalization module. While traditional pool-

ing modules in ConvNet are either average or max pool-

ings, we use an Lp pooling here. The normalization

module is subtractive only as opposed to subtractive and

divisive, i.e. the mean value of each neighborhood is

subtracted to the output of each stage (but not divided

by the standard deviation as it decreases performance

with this dataset). Finally, multi-stage features are also

used as opposed to single-stage features. This architec-

ture is trained using stochastic gradient descent (SGD)

with the Levenberg-Marquardt diagonal approximation

to the Hessian [7].

2.1 Lp-Pooling

Figure 2. L2-pooling applied to a 9x9 feature map

with a 3x3 Gaussian kernel and 2x2 stride

Lp pooling is a biologically inspired pooling layer

modelled on complex cells [13, 5] who’s operation can

be summarized in equation (1), where G is a Gaussian

kernel, I is the input feature map and O is the output

feature map. It can be imagined as giving an increased

weight to stronger features and suppressing weaker fea-

tures. Two special cases of Lp pooling are notable.

P = 1 corresponds to a simple Gaussian averaging,

whereas P = ∞ corresponds to max-pooling (i.e only

the strongest signal is activated). Lp-pooling has been

used previously in [6, 16] and a theoretical analysis of

this method is described in [1].

O = (
∑∑

I(i, j)P ×G(i, j))1/P (1)

Figure 2 demonstrates a simple example of L2-

pooling.

2.2 Multi-Stage Features

Multi-Stage features (MS) are obtained by branch-

ing out outputs of all stages into the classifier (Fig-

ure 3). They provide richer representations compared

to Single-Stage features (SS) by adding complementary

information such as local textures and fine details lost

by higher levels. MS features have consistently im-

proved performance in other work [4, 12, 10] and in

Figure 3. A 2-stage ConvNet architecture where

Multi-Stage features (MS) are fed to a 2-layer classi-

fier. The 1st stage features are branched out, subsam-

pled again and then concatenated to 2nd stage features.

this work as well (Figure 4). However we observe min-

imal gains on this dataset compared to other types of

objects such as pedestrians and traffic signs (Table 1).

The likely explanation for this observation is that gains

are correlated to the amount of texture and multi-scale

characteristics of the objects of interest.

3. Experiments

3.1. Data Preparation

The SVHN classification dataset [9] contains 32x32

images with 3 color channels. The dataset is divided

into three subsets: train set, extra set and test set. The

extra set is a large set of easy samples and train set is

a smaller set of more difficult samples. Since we are

given no information about how the sampling of these

images was done, we assume a random order to con-

struct our validation set. We compose our validation

set with 2/3 from training samples (400 per class) and

1/3 from extra samples (200 per class), yielding a to-

tal of 6000 samples. This distribution allows to mea-

sure success on easy samples but puts more emphasis

on difficult ones. The training and testing sets contain

respectively 598388 and 26032 samples.

Samples are pre-processed with a local contrast nor-

malization (with a 7x7 kernel) on the Y channel of the

YUV space followed by a global contrast normalization

over each channel. No sample distortions were used to

improve invariance. For some experiments, a padding

of 2 pixels with zero value was added to each side of

the input image in order to center the first stage’s 5x5

filters onto image borders.

3.2 Architecture Details

The ConvNet has 2 stages of feature extraction and

a two-layer non-linear classifier. The first convolution

layer produces 16 features with 5x5 convolution filters

while the second convolution layer outputs 512 features

with 7x7 filters. The output to the classifier also in-

cludes inputs from the first layer, which provides lo-



Task Single-Stage features Multi-Stage features Improvement %

Pedestrians detection (INRIA) [10] 14.26% 9.85% 31%

Traffic Signs classification (GTSRB) [12] 1.80% 0.83% 54%

House Numbers classification (SVHN) 5.54% 5.36% 3.2%

Table 1. Error rates improvements of multi-stage features over single-stage features for different types of objects detection

and classification. Improvements are significant for multi-scale and textured objects such as traffic signs and pedestrians but

minimal for house numbers.
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Figure 4. Improvement of Multi-Stage features (MS)

over Single-Stage features (SS) in error rate on the val-

idation set. MS features provide a slight error improve-

ment over SS features.

cal features/motifs to reinforce the global features. The

classifier is a 2-layer non-linear classifier with 20 hid-

den units. Hyper-parameters such as learning rate, reg-

ularization constant and learning rate decay were tuned

on the validation set. We use stochastic gradient descent

as our optimization method and shuffle our dataset after

each training iteration.

For the pooling layers, we compare Lp-pooling for

the value p = 1, 2, 4, 8, 12, 16, 32,∞ on the validation

set and use the best performing pooling on the final

testing. The performance of different pooling meth-

ods on the validation set can be seen in Figure 5. In-

sights from [1] tell us that the optimal value of p varies

for different input spaces and there is no single glob-

ally optimal value for p. With validation data, we

observe that p = 2, 4, 12 give the best performance

(5.62%, 5.64% and 5.61% respectively). Max-pooling

(p = ∞) yielded a validation error rate of 7.57%.

4 Results & Future Work

Our experiments demonstrate a clear advantage of

Lp pooling with 1 < p < ∞ on this dataset, in valida-

tion (Figure 5) and test (L2 pooling is 3.58 points supe-

rior to average pooling in Table 2). With L4 pooling, we

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 1  10  100

V
al

id
at

io
n

 E
rr

o
r 

(%
)

p in Lp pooling

Lp Pooling validation error

Figure 5. Error rate of Lp-pooling on 3 cross-

validation sets for p = 1, 2, 4, 8, 12, 16, 32,∞ (p = ∞

is represented as p = 100 for convenience). These val-

idation errors are reported after 1000 training epochs.

obtain a state-of-the-art performance on the test set with

an accuracy of 95.10% compared to the previous best

accuracy of 90.6% (Table 2). Padding around inputs

improves accuracy by 0.13% points from the 94.97%

non-padded accuracy. This is likely explained by digit

edges being very close to the image borders as seen

in Figure 6. Padding allows centered edge filters to

fire correctly at the borders. We also show that using

multi-stage features gives only a slight increase in per-

formance, compared to the performance increase seen

in other vision applications. In concordance with [9],

we show by comparing “L2” and “L2 / Smaller train-

ing” that using the full dataset (604388 samples) rather

than the hard dataset (73257 samples) improves the ac-

curacy by about 3 points.

Additionally, it is important to note that our approach

is trained fully supervised only, whereas the best pre-

vious methods are unsupervised learning methods (k-

means, auto-encoders). We shall, in the future, run

experiments with unsupervised learning to determine

the gains of ConvNet architectures versus others. Fig-

ure 6 shows the validation samples with highest energy.

Many of these seem to exhibit large scale variations,

future work could address this problem by introducing

artificial scale, elastic and noise deformations during

training.



Algorithm SVHN-Test Accuracy

Binary Features (WDCH) 63.3%

HOG 85.0%

Stacked Sparse Auto-Encoders 89.7 %

K-Means 90.6%

ConvNet / MS / Average Pooling 90.94%

ConvNet / MS / L2 / Smaller training 91.55%

ConvNet / SS / L2 94.46%

ConvNet / MS / L2 94.64%

ConvNet / MS / L12 94.89%

ConvNet / MS / L4 94.97%

ConvNet / MS / L4 / Padded 95.10%

Human Performance 98.0%

Table 2. Performance reported by [9] with the additional Supervised ConvNet with state-of-the-art accuracy of 95.10%.

Figure 6. Preprocessed Y channel of validation samples with highest energy (i.e. highest error) with the 94.64% accuracy

L2-pool based multi-stage ConvNet.
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