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Abstract—We apply Convolutional Networks (ConvNets) to
the task of traffic sign classification as part of the GTSRB
competition. ConvNets are biologically-inspired multi-stage ar-
chitectures that automatically learn hierarchies of invariant
features. While many popular vision approaches use hand-
crafted features such as HOG or SIFT, ConvNets learn features
at every level from data that are tuned to the task at hand. The
traditional ConvNet architecture was modified by feeding 1

st

stage features in addition to 2
nd stage features to the classifier.

The system yielded the 2nd-best accuracy of 98.97% during
phase I of the competition (the best entry obtained 98.98%),
above the human performance of 98.81%, using 32x32 color
input images. Experiments conducted after phase 1 produced
a new record of 99.17% by increasing the network capacity,
and by using greyscale images instead of color. Interestingly,
random features still yielded competitive results (97.33%).

I. INTRODUCTION

TRAFFIC sign recognition has direct real-world applica-

tions such as driver assistance and safety, urban scene

understanding, automated driving, or even sign monitoring

for maintenance. It is a relatively constrained problem in the

sense that signs are unique, rigid and intended to be clearly

visible for drivers, and have little variability in appearance.

Still, the dataset provided by the GTSRB competition [1]

presents a number of difficult challenges due to real-world

variabilities such as viewpoint variations, lighting condi-

tions (saturations, low-contrast), motion-blur, occlusions, sun

glare, physical damage, colors fading, graffiti, stickers and

an input resolution as low as 15x15 (Fig. 1). Although

signs are available as video sequences in the training set,

temporal information is not in the test set. The present project

aims to build a robust recognizer without temporal evidence

accumulation.

Fig. 1. Some difficult samples.

A number of existing approaches to road-sign recognition

have used computationally-expensive sliding window ap-

proaches that solve the detection and classification problems

simultaneously. But many recent systems in the literature

separate these two steps. Detection is first handled with

computationally-inexpensive, hand-crafted algorithms, such

as color thresholding. Classification is subsequently per-

formed on detected candidates with more expensive, but

more accurate, algorithms. Although the task at hand is solely

classification, it is important to keep in mind the ultimate

goal of detection while designing a classifier, in order to

optimize for both accuracy and efficiency. Classification has

been approached with a number of popular classification

methods such as Neural Networks [2], [3], Support Vector

Machines [4], etc. In [5] global sign shapes are first detected

with various heuristics and color thresholding, then the

detected windows are classified using a different Multi-Layer

neural net for each type of outer shape. These neural nets take

30x30 inputs and have at most 30, 15 and 10 hidden units for

each of their 3 layers. While using a similar input size, the

networks used in the present work have orders of magnitude

more parameters. In [6] a fast detector was used for round

speed sign, based on simple cross-correlation technique that

assumes radial symmetry. Unfortunately, such color or shape

assumptions are not true in every country (e.g. U.S. speed

signs [7]).

By contrast, we will approach the task as a general

vision problem, with very few assumptions pertaining to

road signs. While we will not discuss the detection problem,

it could be performed simultaneously by the recognizer

through a sliding window approach, in the spirit of the

early methods. The approach is based on Convolutional

Networks (ConvNets) [8], [9], a biologically-inspired, multi-

layer feed-forward architecture that can learn multiple stages

of invariant features using a combination of supervised and

unsupervised learning (see Figure 2). Each stage is composed

of a (convolutional) filter bank layer, a non-linear transform

layer, and a spatial feature pooling layer. The spatial pooling

layers lower the spatial resolution of the representation,

thereby making the representation robust to small shifts

and geometric distortions, similarly to “complex cells” in

standard models of the visual cortex. ConvNets are generally

composed of one to three stages, capped by a classifier

composed of one or two additional layers. A gradient-based

supervised training procedure updates every single filter in

every filter bank in every layer so as to minimizes a loss

function.

In traditional ConvNets, the output of the last stage is fed

to a classifier. In the present work the outputs of all the

stages are fed to the classifier. This allows the classifier to

use, not just high-level features, which tend to be global,

invariant, but with little precise details, but also pooled low-

level features, which tend to be more local, less invariant,

and more accurately encode local motifs.

The ConvNet was implemented using the EBLearn C++

open-source package 1 [10]. One advantage of ConvNets is

that they can be run at very high speed on low-cost, small-

1http://eblearn.sf.net



Fig. 2. A 2-stage ConvNet architecture. The input is processed in a feed-
forward manner through two stage of convolutions and subsampling, and
finally classified with a linear classifier. The output of the 1st stage is also
fed directly to the classifier as higher-resolution features.

form-factor parallel hardware based on FPGAs or GPUs. Em-

bedded systems based on FPGAs can run large ConvNets in

real time [11], opening the possibility of performing multiple

vision tasks simultaneously with a common infrastructure.

The ConvNet was trained with full supervision on the color

images of the GTSRB dataset and reached 98.97% accuracy

on the phase 1 test set. After the end of phase 1, additional

experiments with grayscale images established a new record

accuracy of 99.17%.

II. ARCHITECTURE

The architecture used in the present work departs from

traditional ConvNets by the type of non-linearities used,

by the use of connections that skip layers, and by the use

of pooling layers with different subsampling ratios for the

connections that skip layers and for those that do not.

A. Multi-Scale Features

Usual ConvNets are organized in strict feed-forward lay-

ered architectures in which the output of one layer is fed

only to the layer above. Instead, the output of the first stage

is branched out and fed to the classifier, in addition to the

output of the second stage (Fig. 2). Contrary to [12], we use

the output of the first stage after pooling/subsampling rather

than before. Additionally, applying a second subsampling

stage on the branched output yielded higher accuracies than

with just one. Therefore the branched 1st-stage outputs are

more subsampled than in traditional ConvNets but overall

undergoes the same amount of subsampling (4x4 here)

than the 2nd-stage outputs. The motivation for combining

representation from multiple stages in the classifier is to

provide different scales of receptive fields to the classifier.

In the case of 2 stages of features, the second stage extracts

“global” and invariant shapes and structures, while the first

stage extracts “local” motifs with more precise details. We

demonstrate the accuracy gain of using such layer-skipping

connections in section III-B.

B. Non-Linearities

In traditional ConvNets, the non-linear layer simply con-

sists in a pointwise sigmoid function, such as tanh(). How-

ever more sophisticated non-linear modules have recently

been shown to yield higher accuracy, particularly in the small

training set size regime [9]. These new non-linear modules

include a pointwise function of the type | tanh()| (rectified

sigmoid), followed by a subtractive local normalization,

and a divisive local normalization. The local normalization

operations are inspired by visual neuroscience models [13],

[14]. The subtractive normalization operation for a given site

xijk computes: vijk = xijk −
∑

ipq wpq .xi,j+p,k+q , where

wpq is a Gaussian weighting window normalized so that∑
ipq wpq = 1. The divisive normalization computes yijk =

vijk/max(c, σjk) where σjk = (
∑

ipq wpq.v
2
i,j+p,k+q)

1/2.

For each sample, the constant c is set to the mean(σjk) in

the experiments. The denominator is the weighted standard

deviation of all features over a spatial neighborhood.

Finding the optimal architecture of a ConvNet for a given

task remains mainly empirical. In the next section, we

investigate multiple architecture choices.

III. EXPERIMENTS

A. Data Preparation

1) Validation: Traffic sign examples in the GTSRB

dataset were extracted from 1-second video sequences, i.e.

each real-world instance yields 30 samples with usually

increasing resolution as the camera is approaching the sign.

One has to be careful to separate each track to build a

meaningful validation set. Mixing all images at random

and subsequently separating into training and validation will

result in very similar sets, and will not accurately predict

performance on the unseen test set. We extract 1 track at

random per class for validation, yielding 1,290 samples for

validation and 25,350 for training. Some experiments will

further be reported using this validation set. While reporting

cross-validated results would be ideal, training time currently

prohibits running many experiments. We will however report

cross-validated results in the future.

2) Pre-processing: All images are down-sampled or up-

sampled to 32x32 (dataset samples sizes vary from 15x15

to 250x250) and converted to YUV space. The Y channel

is then preprocessed with global and local contrast normal-

ization while U and V channels are left unchanged. Global

normalization first centers each image around its mean value,

whereas local normalization (see II-B) emphasizes edges.

Size Validation Error
Original dataset 25,350 1.31783%
Jittered dataset 126,750 1.08527%

TABLE I

PERFORMANCE DIFFERENCE BETWEEN TRAINING ON REGULAR

TRAINING SET AND JITTERED TRAINING SET.

Additionally, we build a jittered dataset by adding 5

transformed versions of the original training set, yielding

126,750 samples in total. Samples are randomly perturbed in

position ([-2,2] pixels), in scale ([.9,1.1] ratio) and rotation

([-15,+15] degrees). ConvNets architectures have built-in

invariance to small translations, scaling and rotations. When

a dataset does not naturally contain those deformations,

adding them synthetically will yield more robust learning

to potential deformations in the test set. We demonstrate the

error rate gain on the validation set in table I. Other realistic

perturbations would probably also increase robustness such

as other affine transformations, brightness, contrast and blur.



B. Network Architecture

[15] showed architecture choice is crucial in a number

of state-of-the-art methods including ConvNets. They also

demonstrate that randomly initialized architectures perfor-

mance correlates with trained architecture performance when

cross-validated. Using this idea, we can empirically search

for an optimal architecture very quickly, by bypassing the

time-consuming feature extractor training. We first extract

features from a set of randomly initialized architectures with

different capacities. We then train the top classifier using

these features as input, again with a range of different capac-

ities. In Fig. 3, we train on the original (non jittered) training

set and evaluate against the validation set the following

architecture parameters:

• Number of features at each stage: 108-108, 108-200, 38-

64, 50-100, 72-128, 22-38 (the left and right numbers

are the number of features at the first and second stages

respectively). Each convolution connection table has a

density of approximately 70-80%, i.e. 108-8640, 108-

16000, 38-1664, 50-4000, 72-7680, 22-684 in number

of convolution kernels per stage respectively.

• Single or multi-scale features. The single-scale archi-

tecture (SS) uses only 2nd stage features as input to the

classifier while multi-scale architecture feed either the

(subsampled) output of the first stage (MS).

• Classifier architecture: single layer (fully connected)

classifier or 2-layer (fully connected) classifier with the

following number of hidden units: 10, 20, 50, 100, 200,

400.

• Color: we either use YUV channels or Y only.

• Different learning rates and regularization values.
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Fig. 3. Validation error rate of random-weights architectures trained on
the non-jittered dataset. The horizontal axis is the number of trainable
parameters in the network. For readability, we group all architectures
described in III-B according to 2 variables: color and architecture (single or
multi-scale).

We report in Fig. 3 the best performing networks among

all learning rates and regularization factors. MS architecture

outperforms SS architecture most of the time. Surprisingly,

using no color is often better than using color. The most suc-

cessful architecture uses MS without color and has 1,437,791

trainable parameters. It uses the 108-200 feature sizes and the

2-layer classifier with 100 hidden units. Note that this sys-

tematic experiment was not conducted for the competition’s

first phase. The architectures used at that time were the 38-64

and 108-108 features with MS architecture, the single layer

classifier and were using color. Here, a deeper and wider

(100 hidden units) classifier outperformed the single-layer

fully connected classifier. Additionally, the optimal feature

sizes among the tested ones are 108-200 for the 1st and 2nd

stage, followed by 108-108. We evaluate this random-feature

ConvNet on the official test set in section IV-B.

We then train in a supervised manner the entire network

(including feature extraction stages) with the top performing

architectures (108-200 and 108-108 with 2-stage classifiers

with 100 and 50 hidden units, without color and with the MS

feature architecture) on the jittered training set. Combining

108-108 features, 50 hidden units and no color performed

best on the validation set, reaching 0.31% error. We finally

evaluate this trained network against the official test set.

Results are shown in section IV-B.

IV. RESULTS

We report and analyze results both during and after com-

petition’s phase I.

A. GTSRB Competition Phase I

# Team Method Accuracy

197 IDSIA cnn hog3 98.98%
196 IDSIA cnn cnn hog3 98.98%
178 sermanet EBLearn 2LConvNet

ms 108 feats 98.97%
195 IDSIA cnn cnn hog3 haar 98.97%
187 sermanet EBLearn 2LConvNet

ms 108 + val 98.89%

199 INI-RTCV Human performance 98.81%
170 IDSIA CNN(IMG) MLP(HOG3) 98.79%
177 IDSIA CNN(IMG) MLP(HOG3)

MLP(HAAR) 98.72%
26 sermanet EBLearn 2-layer ConvNet ms 98.59%
193 IDSIA CNN 7HL norm 98.46%
198 sermanet EBLearn 2-layer ConvNet

ms reg 98.41%
185 sermanet EBLearn 2L CNN

ms + validation 98.41%
27 sermanet EBLearn 2-layer ConvNet ss 98.20%
191 IDSIA CNN 7HL 98.10%
183 Radu.Ti-

mofte@VISICS IKSVM+LDA+HOGs 97.88%
166 IDSIA CNN 6HL 97.56%
184 Radu.Ti-

mofte@VISICS CS+I+HOGs 97.35%

TABLE II

TOP 17 TEST SET ACCURACY RESULTS DURING COMPETITION’S FIRST

PHASE.

We reached 98.97% accuracy during competition’s first

phase by submitting 6 results. We reproduce in table II

results as published on the GTSRB website 2. It is interesting

to note that the top 13 systems all use ConvNets with at least

98.10% accuracy and that human performance (98.81%)

is outperformed by 5 of these. Again, the MS architecture

(#26) outperformed the SS architecture (#27).

2http://benchmark.ini.rub.de/index.php?section=results



We now describe each of the 6 systems submitted during

Phase I. All systems have 2 stages of feature extraction

(“2-layer”) followed by a single fully connected linear

classifier and use color information. The poorest performing

network (#27) uses the traditional single-scale (“ss”) feature

architecture while other networks use multi-scale (“ms”)

features by feeding their first and second stage features to

the classifier.

• (#178) 2-layer ConvNet ms 108 feats (98.97%): This

network uses 108 features at the first stage (100 con-

nected to grayscale Y input channel and 8 to U and V

color channels) and 108 features at the second stage.

• (#187) 2-layer ConvNet ms 108 + val (98.89%): Same

network as #178, with additional training on validation

data.

• (#26) 2-layer ConvNet ms (98.59%): This network uses

38 features at the first stage (30 for grayscale and 8 for

U and V) and 64 at the second stage.

• (#198) 2-layer ConvNet ms reg (98.41%): Same net-

work as #26 with stronger regularization.

• (#185) 2-layer ConvNet ms + validation (98.41%):

Same network as #26 with additional training on vali-

dation data.

• (#27) 2-layer ConvNet ss (98.20%): Same network as

#26 except it only uses second stage features as input

to the classifier.

B. Post Phase I results

Similarly to phase I, we evaluated only a few newly trained

network on the test set to avoid overfitting. We establish a

new record of 99.17% accuracy (see Table III) by increasing

the classifier’s capacity and depth (2-layer classifier with 100

hidden units instead of the single-layer classifier) and by

ignoring color information (see corresponding convolutional

filters in Fig 4).

# Team Method Accuracy

sermanet EBLearn 2LConvNet ms 108-108 99.17%
+ 100-feats CF classifier + No color

197 IDSIA cnn hog3 98.98%
196 IDSIA cnn cnn hog3 98.98%
178 sermanet EBLearn 2LConvNet ms 108-108 98.97%

sermanet EBLearn 2LConvNet ms 108-200 98.85%
+ 100-feats CF classifier + No color

sermanet EBLearn 2LConvNet ms 108-200 97.33%
+ 100-feats CF classifier + No color
+ Ramdom features + No jitter

TABLE III

POST PHASE I NETWORKS EVALUATED AGAINST THE OFFICIAL TEST SET

BREAK THE PREVIOUS 98.98% ACCURACY RECORD WITH 99.17%.

We also evaluate the best ConvNet with random features

in section III-B (108-200 random features by training the

2-layer classifier with 100 hidden units only) and obtain

97.33% accuracy on the test set (see convolutional filters

in Fig 4). Recall that this network was trained on the non-

jittered dataset and could thus perform even better. The

exact same architecture with trained features reaches 98.85%

accuracy only while a network with a smaller second stage

(108 instead of 200) reached 99.17%. Comparing random

and trained convolutional filters (Fig 4), we observe that

2nd stage trained filters mostly contain flat surfaces with

sparse positive or negative responses. While these filters are

quite different from random filters, the 1st stage trained

filters are not. The specificity of the learned 2nd stage

filters may explain why more of them are required with

random features, thus increasing the chances of containing

appropriates features. A smaller 2nd stage however may be

easier to train with less diluted gradients and more optimal

in terms of capacity. We therefore infer that after finding

an optimal architecture with random features, one should try

smaller stages (beyond the 1st stage) with respect to the best

random architecture, during full supervision.

Fig. 4. 5x5 convolution filters for the first stage (top) and second
stage (bottom). Left: Random-features ConvNet reaching 97.33%
accuracy (see Table III), with 108 and 16000 filters for stages 1
and 2 respecitvely. Right: Fully trained ConvNet reaching 99.17%
accuracy, with 108 and 8640 filters for stages 1 and 2.

Finally, we analyze the remaining test set errors of the

99.17% accuracy network by displaying each 104 sam-

ple’s input channels, i.e. normalized Y intensity and non-

normalized U and V colors in Fig 5. This particular network

uses grayscale only (left column) and could have clearly

benefited from color information for the worst errors (top),

where an arrow is hardly visible in grayscale but clearly is

in color channels. We however showed that non-normalized

color yielded overall worse performance. Still, future ex-

periments with normalized color channels may reveal that

color edges may be more informative than raw color. Thus,

we hypothesize raw UV color may not be an optimal input

format, or additionally that the wide array lighting conditions

(see Fig 1) makes color in general unreliable. Additionally, a

few errors seem to arise from motion blur and low contrast,

which may be improved by extending jitter to additional

real-world deformations. Remaining errors, are likely due to



physically degraded road-signs and too low-resolution inputs

for which classification is impossible with a single image

instance.

Fig. 5. Remaining 104 errors out of 12569 samples of the test set
with the 99.17% accuracy ConvNet (using the left grayscale channel
only). The samples are sorted from top to bottom by energy error
(top samples are the furthest away from their target vector). The
top worst answers clearly could have benefited the use of the color
channels. Images are resized to 32x32 and preprocessed to YUV
color scheme. Left: The normalized Y channel (intensity). Middle:
U color channel (non-normalized). Right: V color channel (non-
normalized).

V. SUMMARY AND FUTURE WORK

We presented a Convolutional Network architecture with

state-of-the-art results on the GTSRB traffic sign dataset

implemented with the EBLearn open-source library [10].

During phase I of the GTSRB competition, this architecture

reached 98.97% accuracy using 32x32 colored data while

the top score was obtained by the IDSIA team with 98.98%.

The first 13 top scores were obtained with ConvNet architec-

tures, 5 of which were above human performance (98.81%).

Subsequently to this first phase, we establish a new record

of 99.17% accuracy by increasing our network’s capacity

and depth and ignoring color information. This somewhat

contradicts prior results with other methods suggesting that

colorless recognition, while effective, was less accurate [16].

We also demonstrated the benefits of multi-scale features in

multiple experiments. Additionally, we report very competi-

tive results (97.33%) using random features while searching

for an optimal architecture rapidly. We suggest that feature

stages past the 1st stage should be smaller than the optimal

random architecture stages.

Future work should investigate the impact of unsupervised

pre-training of feature extracting stages, particularly with

a higher number of features at each stage, which can be

more easily learned than with a purely supervised fashion.

The impact of input resolution should be studied to im-

prove both accuracy and processing speed. More diverse

training set deformations can also be investigated such as

brightness, contrast, shear and blur perturbations to address

the numerous real-world deformations highlighted in Fig. 1.

Additionally, widening the second feature extraction stage

while sparsifying its connection table might allow using a

lighter classifier, thus reducing computation. Finally, ensem-

ble processing with multiple networks might further enhance

accuracy. Taking votes from colored and non-colored net-

works can probably alleviate both situations where color

may be used or not. By visualizing remaining errors, we

also suspect that normalized color channels may be more

informative than raw color.
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