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1 Introduction

Layered neural networks are of interest as a tool to implement input-output maps. This
work explores the ability of such architectures to perform pattern recognition tasks.

The ensemble of all possible network configurations compatible with a fixed architecture
is explored to define a probability distribution over the space of input-output maps. Such
distribution fully describes the functional capabilities of the chosen architecture. Its entropy
measures the intrinsic functional diversity of the network ensemble.

Supervised learning is formulated as an optimization problem, resulting in a monotonic
decrease of the effective volume of configuration space through the exponential elimination of
network configurations incompatible with the examples of the desired map. Such contraction
results in increased specificity in the functional capabilities of the ensemble, and a monotonic
entropy reduction.

The residual entropy of the ensemble of trained networks monitors the emergence of gen-
eralization ability. As the residual entropy is decreased to zero, all ambiguity about the
implemented map is eliminated. Only the desired map survives, and full generalization
ability is achieved. B

The number of examples needed to achieve an acceptable level of generalization ability
is controlled by the intrinsic entropy of the chosen architecture, and can be decreased by
reducing the number of independent parameters needed to specify the network configuration.
Such reduction must be planned with care, not to destroy the ability to implement the
desired input-output map.

The strategy is to increase the specificity towards the implementation of the desired task
by incorporating prior knowledge about the task onto the architecture. Fully connected,
unrestricted networks do not work well for the pattern recognition problem. Constrained
networks better suited to this task use hidden units with locally connected receptive fields.
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Figure 1: A layered feed-forward network with L levels of processing.

deterministic parallel dynamics, as shown in Fig. 1. The network consists of L + 1 layers
providing L levels of processing [Solla 89]. The first layer at £ = 0 is the input field, and
contains Ng units. Subsequent layers are labeled 1 < ¢ < L; the £-th layer contains N,
units. The £-th level of processing corresponds to determining the state of the units in layer
£ according to the following deterministic and parallel rule:

Ny
o = ZW:'(J'[)Vj(t—l) +VV'([),
=1

v = g

(2.2)

The state V'([) of unit 7 in layer £ is thus determined by the states {VJ(['”}, 1<j7< Nyoy,
of units in the preceding layer.

The first layer receives input from the external world: a pattern is presented to the network
by fixing the values of the state variables {K(o)}, 1 < i £ Np. The states of subsequent
layers are determined consecutively according to Eq. (2.2). The state of the last layer at
¢ = L is the output. Given Z = V(0 the network produces an output ¥ = V(&), thus
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implementing an input-output map § = f(Z).

It is precisely such ability to implement input-output maps that has triggered much recent
interest in layered architectures [Lippmann 87]. Pattern recognition tasks require the iden-
tification of inputs as belonging to one out of a set of possible categories. Layered neural
networks provide a simple representation for such classification tasks: the j-th output unit
is devoted to a specific logical preposition A, about the input (the input belongs to category
J, or possesses attribute j, or evokes memory j). The activity y§ of the j-th output unit
under presentation of input Z* is interpreted as the conditional probability that A4; is true
for z:

y; = Prob{4, = T|z"}. (2.3)

This probabilistic interpretation of the activity of the output units provides a tool for the
implementation of tasks such as categorization, pattern recognition, diagnosis, assignment
of meaning, and associative memory.

A layered architecture is specified by the number {N,},0 < £ < L of units per layer. The
parameters of the network are the couplings {Wi(jl)}, 1<i< Ny 1<j< N1, 1<E<L L,

and the biases {W,-(t)}, 1< i< N1 < €< L, corresponding to a point W in a configuration
space of dimension

L
Dy =Y Ne(1+ Neey). (2.4)

(=1
The dimensionality D thus counts the number of independent parameters needed to spec-
ify the network. It follows from Eq. (2.4) that Dy, ~ L < N? >, where L is the depth of the
network and < N, > is a characteristic layer width. Thus Dy, is typically a large number,

and it scales as Dy, ~ N2/L, where N = Y7, N¢ is the total number of processing units.

The configuration space {W} describes the ensemble of all possible networks that can be
constructed within the constraint of the specified architecture. Every point W in configura-
tion space represents a specific network design and corresponds to the realization of a specific
input-output map fi,. A question that arises is that of characterizing the class of maps
¥ = f(£) that can be implemented by a given network architecture. Such characterization
requires a full exploration of configuration space.

Among the various functions that are implementable by the chosen architecture, there is
a desired map f to be realized. "The process of learning refers to a guided exploration of
configuration space so as to determine values of the couplings {W,.(f)} and biases {W'(t)}
for which fy = f. Such search for configurations W which implement the map f is guided

by whatever information is available on the desired map. Supervised learning requires the
availability of examples: input-output pairs (£, %) for which ¥ = f(Z).



3 Functional Capabilities

Every point W in configuration space selects a specific network design which implements
the map fiz. It is convenient to partition configuration space according to the functional
capabilities of the network ensemble. Regions corresponding to the implementation of a
specific map f are selected by a masking function

n 1 if fp=f
Of(W)={0 if f:,:?ff

Given a prior density po(W) which constrains the effective volume of configuration space to
[ dWpo(W) = 1, the fractional volume occupied by configurations which implement f is
given by

Po(f) = [ dWpo()0,(W). (3.1)

The functional capabilities of the network ensemble described by the density po(W) are
quantitatively specified by the probability distribution Po(f) on the space of functions
[Solla 89]. The class of functions implementable by the chosen architecture is

Fo = {f|Polf) # 0}. (32)
The realizability of the desired map f corresponds to the requirement Po( fi#o0.

It is useful to consider the entropy [Denker 87)

So ==Y Po(f)In Po(f) (3.3)
n

of the prior distribution. Only functions f € Fo contribute to So. The optimal case of
an ensemble devoted to the unique implementation of the desired map f corresponds to
Po(f) =1 and Py(f) = O for all f # £, and results in So = 0. But in a typical case the set
Fo of realizable functions contains many maps f besides f, and So > 0.

Learning refers to a systematic modification of the network ensemble towards specificity in
the implementation of the desired map f. The starting point is an ensemble defined by the
density po(W) and characterized by the prior entropy So; learning results in a systematic
entropy reduction towards the goal § = 0.

The prior entropy Sp is an intrinsic property of the chosen network architecture: the en-
semble of possible network configurations described by the density po(W) fully determines
the distribution FPy(f) and its associated entropy. This intrinsic entropy is bounded by

So < Inn, (3.4)

where ng is the number of implementable functions which define the class Fo, Eq. (3.2). The
upper bound is attained when all realizable functions are equally likely, and corresponds
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to a uniform distribution, Po(f) = 1/ng for all f € Fo. This bound is rarely achieved; the
distribution Po(f) is typically nonuniform since the prior ensemble is biased towards the
implementation of a subset of functions within Fo.

The characterization of the functional capabilities of the network ensemble through the
probability distribution Py(f) provides two criteria for the appropriate choice of network
architecture. The first one is the realizability of the desired map, Po(f) # 0. The second
one is specificity: Po(f) >> Po(f) for most other f € Fo, which results in a small intrinsic
entropy So and facilitates the achievement of § = 0 through learning.

4 Supervised Learning

Supervised learning requires examples of the desired map f. The training set contains m
input-output pairs (2%, §*), 1 € a < m, for which # = f(£*). Learning the training set is
posed as an optimization problem [Solla 88] by introducing a measure of quality: to which
extent does the map fi; realized by network W coincide with the desired map f? Given

the input £, network W associates to it the output fiw(£%). The distance

(W) = (7™, fp(£%)) (4.1)

between the target # and the actual output fi;(£*) measures the error made by the
network on the a-th example.

The total error

m

En(W)= ) (W) (4.2)
a=1
measures the dissimilarity between fiz and f on the restricted domain {Z*},1 < a < m,
of input space. This measure is not just a counting of the number of errors. It is based
on a distance in output space, and thus carries information on the magnitude of the error
incurred on, if any. A configuration satisfying

En(W)=0 (4.3)

is that of a network which produces the correct output 3™ for every input £ in the training
set.

Learning refers to the search for global minima of E,,(W). A variety of techniques can
be applied to this optimization problem. Gradient descent results in the back-propagation
algorithm [Rumelhart 86). Although the task is rendered difficult by the high dimensionality
Dy of configuration space (Eq. (2.4)), and the roughness of the surface defined by En (W)
[Solla 88], it is somewhat simplified by knowing that solutions correspond to E(W) = 0.

The search for network configurations W which satisfy the E,,(W) = 0 condition results
in a modification of the network ensemble. The untrained networks are described by the
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probability po(W) of finding network W within the ensemble. The probability pm(W) of
finding neth.rk W within the ensemble of trained networks includes a survival probability,
exp{—BEm(W)}. After appropriate normalization,

- 1 -
pm(W) = Z—PO(W)e_ﬂE"'(W), (4.4)
m

with
T = [ & po)e"Em0D). (45)

The parameter 8 controls the error sensitivity. The limit 8 — oo corresponds to error-free
learning, since network W can only survive the trammg if it produces the correct output
for every input in the training set: as § — oo, Em(W) # 0 results in p, (W) = 0. For finite
B, po(W) # 0 guarantees p,,(W) # 0. All networks present in the prior ensemble are still
represented in the trained ensemble, but with a probability that is reduced exponentially
with the error of the network on the training set.

The normalization integral Z,, of Eq. (4.5) measures the effective volume of conﬁguratlon
space occupied by the ensemble of trained networks, and guarantees f dem(W)
Since En(W) > Em-1(W) for all networks W, then Z < Zp-1. Learning thus results in
a monotonic contraction of the effective volume in conﬁguration space as the size m of the
training set is increased.

The ensemble of trained networks described by the density pm(W) of Eq. (4.4) is a Gibbs
canonical ensemble [Tishby 89], with the error sensitivity parameter § playing the role of
an inverse temperature. The properties of the ensemble can be investigated using standard
statistical physics techniques. The normalization integral Z,, of Eq. (4.5) is the partition
function, from which the average learning error, the entropy, and the prediction error can
be obtained through appropriate derivatives [Tishby 89,Levin 89].

5 Generalization Ability

Although supervised learning is formulated as a search for networks which minimize the
learning error E,,(W) on the training set, the actual goal is to produce networks with
good generalization ability, i. e.- a high probability of producing the correct output for
inputs not in the training set. The generalization ability G, is defined as the probability
that a trained network, chosen according to the probability density p,,(W), will produce
the correct output for an arbitrary test input Z, distinct from the m training inputs. The
problem is thus one of extending the domain of a function: given the partial information of
knowing f only on the points {z*}, 1 £ a < m of the training set, is it possible to obtain
a network which realizes the target function f, and thus produces f(Z) for every point in
input space {£}?

A learning session starts with a network chosen from the prior ensemble according to the
probability density po(W), and produces through the modification of the couplings and
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biases a network belonging to the trained ensemble, as described by the probability density
pm(W). A meaningful measure of the emerging generalization ability can only be obtained
by considering the statistical properties of the ensemble of trained networks.

It is straightforward to extend the analysis of functional capabilities of Sec. 3 to the ensemble
of trained networks described by the probability density p,,(W). The probability of finding
networks which implement a specific map f is given by

Pu(f) = [ dWpn(W)0;(W). (5.1)
All networks W for which © f(W) = 1 share a common value of the learning error Ep,(W).

Then -
Pn(f) - Pm(KV) (5.2)
Fo(f)  po(W)

for all W such that © s(W) = 1. The equality (5.2) proves that the partition of configuration

space according to its functional capabilities is sufficient in the statistical sense [Levin 89],
in that it implies no loss of information.

It follows from Egs. (4.4) and (5.2) that

Po(f) o 1 -8Em() _
Bl - Za° : (5.3)

with Zp, <1 (since Zm < Zo, and Zp = 1), and Ep,(f) standing for the common value of
m(W) for all networks W for which @ (W) = 1. The target function is emphasized, since
E.(f)=0, and

P _ 1 1. (5.4)

Po(f)  Zm ~
The same amplification factor (Z,,)~! affects all functions f sufficiently similar to the target
function f to agree with it on all m training inputs. Functions for which E,, (f) > 0 differ
from f even on the restricted set of inputs £2}, 1 < a < m, and are exponentially
deemphasized according to Eq. (5.3). Such sharpening of the probability distribution on
the space of functions results in a decrease of the entropy

== Pu(f)In Pu(f) (5.5)
{1}

with respect to the intrinsic entropy Sp. The monotonic decrease of the entropy Sy, with in-
creasing training set size m reflects an increasing specificity. The network ensemble becomes
narrowly focused on the implementation of the target function f and a class of functions
increasingly similar to f.

Consider the class of functions

Fm = {f|Pn(f) # 0} (5.6)

implementable by the ensemble of trained networks. Only functions f € Fy, contribute to
Sin. It follows from Eq. (5.4) that Po(f) # 0 guarantees P,(f) # 0. But P, (f) # 0 for all
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f € Fm, not only f. It is precisely such residual diversity in the functional capabilities of the
trained ensemble which conspires against the achievement of perfect generalization ability.
Training does not necessarily result in a network W which implements f, but in a network
W which implements any function f € F,, with probability Pn(f). It is only through the
systematic decrease of the residual entropy Sy, that generalization ability emerges.

The efficiency of the m-th example in reducing the ensemble entropy,
NMm = Sm—l - Sm, (57)

measures the information content of the example. The average efficiency of a training set
of size m,

1 m
n= '7; ;Ui, ('5°8)
is given by the total entropy decrease,
= SO__‘EE_ (5.9)

The goal S,, = 0 thus requires a training set of size

m* = _‘?;9 (510)
n
The number of examples m* needed to restrict the functionality of the ensemble to the

implementation of f is proportional to S, the intrinsic entropy of the chosen architecture.
The bound of Eq. (3.4) implies

-

m* < =lnno. (5.11)

3

Meaningful generalization ability can be extracted from a reasonably small training set
only through constraints in the intrinsic functional capabilities of the chosen architecture.
Consider the implementation of Boolean functions from Np inputs into N; = 1 output.
There are 22"° such functions. If the chosen architecture is so general as to be able to
implement all of them, then Inng = 2™, and the desired map f cannot be extracted
until the training set size reaches m* ~ 2No, Such regime requiring a number of examples
comparable to the total number of points in input space is of little interest.

The number ng of functions implementable by the chosen architecture can be estimated by
considering that it cannot exceed the total number of distinct networks within the prior
ensemble. If the couplings and biases are specified with b bits of precision, then In ng < bD .,
where Dy, is the dimensionality of configuration space. Since Dy ~ N2/L, where N is
the total number of neurons and L is the depth of the network, the number of examples
needed to extract the desired map f is bounded by m* ~ bN?/L, a number which can be
kept reasonably small by a judicious choice of network architecture.
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6 The Contiguity Problem

The use of layered neural networks for classification, categorization, or diagnosis, discussed
in Sec. 2, relies on the interpretation of the activity y§ of the j-th output unit under
presentation of the a-th input (Eq. (2.3)) as the probability that the input belongs to
category j or possesses attribute j.

A specific classification task, the contiguity problem [Denker 87,Solla 88,Solla 89] is used
here to illustrate issues of learning and generalization. The contiguity problem is a classi-
fication of binary input patterns Z = (z1,...,2n,), i = 0,1 for all 1 < i < N, into classes
according to the number k of blocks of +1’s in the pattern. For example, for Ny = 10,
£ = (0110011100) corresponds to k = 2, while ¥ = (0101101111) corresponds to k = 3.
This classification leads to (1 + kna.z) categories corresponding to 0 < k < Kpaz, With
B er =} %‘1 |. (For any real number u in the interval (n — 1) < u < n, | 4 |= n is the upper
integer part of u).

AW

! 2 3 Ng

Figure 2: A network solution to the contiguity problem with L = 2. All couplings {W;,}
have absolute value of unity. Excitatory (W,, = +1) and inhibitory (W;; = —1) couplings

are indicated by — and -e, respectively. Intermediate units are biased by W'(l) = —0.5; the
output unit is biased by W ® = — (ko + 0.5).

There are
N(k) = ( No k1 ) (6.1)

input patterns in the k-th category. A simpler classification task investigated here is the
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dichotomy into two classes corresponding to k < ko and k > ko. This problem can be solved
[Solla 89] by an L = 2 layered network with Ng input units, Ny = Np intermediate units,
and N; = 1 output unit. The architecture is shown in Fig. 2. The first level of processing
detects subsequent 01 pairs corresponding to the left edge of a block, and the second level
of processing counts the number of such edges to determine the value of k.

A

Figure 3: Network architecture for learning contiguity, with L = 2, No = N3, N2 = 1, and
a receptive field of size p.

Knowing that such solution exists, we choose for our learning experiments the network
architecture shown in Fig. 3, with Ny = N; and N, = 1. The network is not fully connected:
each unit in the £ = 1 layer receives input from only the p subsequent units just below it in
the £ = 0 layer. The parameter p can be interpreted as the width of a receptive field. Note
that p < Np, and that for p < Ny the network is not fully connected.

The results reported here are for No = 10, kg = 2, and 2 < p < 10. The total domain
of 2o = 1024 input patterns is restricted to the union of M(2) = 330 and N (3) = 462
corresponding to k = 2 and k = 3 respectively. Out of these N (2) + M(3) = 792 input
patterns, a training set of m = 100 patterns is randomly selected, with m(2) = m(3) = 50
examples of each category.

The search for appropriate network configurations W is performed using the back-propagation

- m—— &
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algorithm [Rumelhart 86] and the quadratic error function {Solla 88]

m

m(W) = Z (v® — fip (%)% (6.2)

The starting point W, for the gradient descent algorithm is chosen at random from a normal
distribution. The step size for the downhill search is kept constant during each run.

After each learning iteration consisting of a full presentation of the training set (At = 1),
the network is checked for learning and generalization abilities by separately counting the
fraction of correct classifications for patterns within (%L) and not included (%G) in the
training set, respectively. The classification of the a-th input pattern is considered correct
if Jy* — fp(£%)| £ A, with A = 0.1.

Both the learning %L and generalization %G abilities of the network are monitored as a
function of time ¢. The learning process is terminated after r presentations of the training
set. The stopping criterion is that the network performance on the training set, as measured
by E,, defined in Eq. (6.2), satisfies E,;, < 0.005. For a training set of size m = 100 and
the network architecture of Fig. 3, learning is always successful for p > 3.

p 10918 7|65 (|43
%G | 55(|59(61|63|68|73[90|95

Table I. Results for learning contiguity with varying receptive fields p, averaged over suc-
cessful training runs (%L = 100).

Results summarized in Table I are averages over several runs with different starting points
W, for each value of p. All simulations achieved %L = 100. Note that the generalization
ability of the resulting networks increases monotonically with decreasing p. For p = 3,
%G = 100 is sometimes obtained. For p = 2, the gradient descent algorithm often gets
trapped in local minima with large E,,, and %L = 100 cannot be achieved. But when
a p = 2 network is successfully trained to %L = 100, it also exhibits full generalization
ability %G = 100. It is of interest to examine the network configurations which exhibit
good generalization ability. The p = 2 and 3 networks with %G = 100 correspond to
organization into edge detectors, as shown in Fig. 2.

The monotonic improvement of the generalization ability with decreasing receptive field p,
illustrated for the contiguity problem in Table I, is a consequence of the reduction of the
dimensionality Dy of configuration space and the concurrent reduction in the number ng
of implementable functions.

The effect is quite general, and is described as follows. The dimensionality Dy of Eq. (2.4)
can be written as

L
Dy = Zd(, (6.3)

=1
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where d; counts the number of couplings and biases incoming to the units in layer £. For a
fully connected network as shown in Fig. 1, each of the N, units in layer £ receives a bias,
and input from all N,_; units in layer (£ — 1). Thus

de = Ne(1+ Ne-1), (6.4)

and Eq. (2.4) is recovered. For a network with a receptive field organization, each of the
N¢ units in layer £ receives a bias, and input from the p units in layer (£ — 1) within its
receptive field. Thus

de = Ne(1 +p), (6.5)

which results in a dimensionality reduction for p < Ng.

For the contiguity problem, the network architecture of Fig. 3 corresponds to d; = No(1+p),
dy = (1+Np), and Dy, = No(p+2)+1. Full connectivity is recovered for p = Ny, and results
in Dy = (No+1)%. Note the difference between Dz, ~ N for the fully connected network,
and the linear Dy, ~ pNy for the constrained network. Dimensionality reduction limits
the functional capabilities of the chosen architecture, and results in better generalization
ability even for a small number of training examples. Specificity is lost by increasing p; the
resulting increase in the number ng of implementable functions requires an increase in the
number of training examples if good generalization ability is to be achieved.

Specificity due to limited receptive fields stimulates the emergence of feature extractors
such as edge detectors. This method for dimensionality reduction is thus particularly well
suited for networks intended for pattern recognition tasks. Further reduction in the number
of independent parameters needed to specify the network can be achieved through weight-
sharing techniques [Rumelhart 86,le Cun 89]. The basic idea is to incorporate symmetries
in the form of equality constraints which reduce Dy, without modifying the actual size of
the network. In the case of pattern recognition, these additional constraints can be used to
generate shift-invariant feature extractors.

As a simple illustration of the weight-sharing techniques, consider once more the network
architecture of Fig. 3. For p = 2, D;, = 4Np + 1 independent parameters are needed
to specify the network. Since the solution of Fig. 2 is based on a unique type of feature
extractor, namely edge detectors, further constraints can be introduced by requiring

w®

55—

1= WL (66(1)

and
wl = wg (6.6b)

for all 1 <4 < Np. Such constraint guarantees the equality of all weights coming from left
and right onto all units in the £ = 1 layer, and produces a shift-invariant feature extractor
(Except for the i = 1 unit which receives input only from the unit below it, as shown
in Fig. 2). The dimensionality of configuration space is thus reduced to Dy = 2Np + 3,
without any decrease in the size of the network.

It might be argued that the p = 2 network is already quite constrained, and that to impose
the additional weight-sharing equalities of Eq. (6.6) amounts to giving too much of an
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architectural hint about the task to be performed. Such criticism can only be overcome
by demonstrating the power of the techniques when applied to larger problems, as the one
considered in the following Section.

7 The Digit Recognition Problem

The use of limited receptive fields in combination with weight-sharing techniques stimulates
the emergence of shift-invariant feature extractors and generates networks with good gen-
eralization ability for pattern recognition tasks. A specific classification task based on the
recognition of handwritten digits [le Cun 89] is used here to illustrate such strategy.

The problem is the classification of numerals. Inputs consist of 16x16 images of binary
pixels, handwritten by a single person using a mouse. Of the 48 examples generated for
each class, 32 are randomly selected to form a training set of size m = 320. The remaining
160 examples are used to evaluate the generalization ability of the trained networks. Some
of the training examples are shown in Fig. 4.
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Figure 4: Some examples of input patterns.

Learning experiments have been performed on a variety of network architectures. In all
cases the input field contains Ny =16x16=256 units, and Ny = 10 output units are used
to represent the 10 distinct categories. The search for appropriate network configurations
W is performed using the back-propagation algorithm. The starting point W, for the
gradient descent algorithm is chosen at random from a uniform distribution, scaled for each
component according to the size of the receptive field it contributes to. The step size for the
downhill search is adjusted according to the curvature of the error function [le Cun 89]. The
learning process is terminated after r = 30 presentations of the training set. The output is
considered correct if the most active unit signals the correct category.
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Three different network architectures investigated for this problem are described and com-
pared below.

7.1 Network # 1

This is an L = 2 fully connected network, as shown in Fig. 5. The intermediate £ = 1
layer contains N; = 12 hidden units. Since the network is fully connected, dy = Ny(1 +
No)=12x257=3084, and d; = No(1+ N;)=10x13=130, resulting in Dy, = 3214 independent
parameters. This network achieves a generalization ability of %G = 87.

6 x I6 12 tO

Figure 5: Network # 1, an L = 2 network with Ny =16x16=256, N; = 12, and N; = 10.

The generalization ability exhibits large fluctuations for networks trained from different
starting points W,. A large variance with respect to the mean %G indicates that the
available data is not sufficient to'specify the configuration of the chosen architecture. The
trained ensemble is too diverse, and the many configurations W which are compatible with

the training set vary widely in their generalization ability. This network architecture has
too many independent parameters.

7.2 Network # 2

This is an L = 3 network with limited receptive fields, as shown in Fig. 6. The £ = 1 layer
consists of a square array of N;=8x8=64 units, each one of them receiving input from a
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receptive field of size p=3x3=9, resulting in d; = N1(1 + p)=64x10=640. The £ = 2 layer
consists of a smaller square array of N,=4x4=16 units, each of them receiving input from a
receptive field of size p=5x5=25, resulting in d, = Na(1 + p)=16x26=416. The £ = 2 layer
is fully connected to the output at £ = 3, and d3 = N3(1 + N3)=10x17=170. The total
number of independent parameters is Dy = 1226.

4x4

Figure 6: Network # 2, an L = 3 network with No=16x16=256, N1=8x8=64, Ny=4x4=16,
and N3 = 10.

This network achieves a generalization ability of %G = 89.5. The performance is better
than that of the preceding network: a better mean value for the generalization ability
together with a smaller variance indicate that the ensemble of trained networks is more
narrowly focused in its functional capabilities. Since both networks have been trained with
the same training set of size m = 320, a smaller residual entropy Sy, reflects a smaller
intrinsic entropy So for the constrained network.

7.3 Network # 3

This is an L = 3 network with limited receptive fields and shared weights, as shown in
Fig. 7. The £ = 1 layer consists of two square arrays of 8x8=64 units each, with a total of
Ny = 128 units. Each one of these arrays is a feature map: all units within a given array
share the same weights, and therefore detect the same feature at different locations of the
input field. As in the preceding network, every unit in the £ = 1 layer receives input from a
receptive field of size p=3x3=9. But in contrast to network # 2, all units within a feature
map share the same set of 9 couplings, although they can have different biases. Thus 64
biases and 9 coupling suffice to specify all connections into each of the feature maps, and
d1=2x(64+9)= 146.
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8x8 10
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Figure 7: Network #3, an L = 3 network with Ny=16x16=256, N;=2x8x8=128,
N3=4x4=16, and N; = 10.

The £ = 2 layer consists of a smaller square array of No= 4x4=16 units. Each receives
input from two receptive fields of size p=5x5=25, located in equivalent positions in both
feature maps. There is no weight-sharing, and dy = Ny(1 + 2p)=16x51=816. The £ = 2
layer is fully connected to the output at £ = 3, and d3 = N3(1+4 N;)=10x17=170. The total
number of independent parameters for this network is Dy =1132.

This network achieves a generalization ability of %G = 94. Shift-invariant feature extraction
is a yseful tool for the digit recognition task!

7.4 Comparative Remarks

The systematic improvement of the generalization ability achieved through the successive
training of networks # 1, # 2, and# 3, illustrates the advantages of reducing the func-
tional capabilities of the chosen architecture. A systematic reduction in the number Dy
of free parameters needed to specify the network results in a decrease of the number ng of
implementable functions and of the intrinsic entropy So. Such loss of generality should not
undermine the network’s ability to implement the desired function: the specific strategy
adopted to achieve the dimensionality reduction should be tailored to the task.

The strategy is to incorporate prior knowledge about the desired task onto the choice of
network architecture. Although specifying such knowledge might be difficult in a general
case, it appears feasible in highly regular tasks such as pattern recognition. Solutions to this
problem rely on extracting local features, and combining them into higher order features.

- e e -
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Fully connected networks such as network # 1 do not work very well for this problem. The
use of limited receptive fields in networks # 2 and # 3 forces the hidden units to combine
only local sources of information, and stimulates the emergence of feature extractors.

For both networks # 2 and # 3, units in layer £ = 1 receive information from 9 units in
the £ = 0 input layer, arranged in a 3x3 square. Contiguous receptive fields are displaced
by two units in the £ = 0 plane, so that the input fields of adjacent units in the £ = 1
layer share either a row or a column. The contraction from 16x16 to 8x8 thus achieved in
going from £ = 0 to £ = 1 results in a loss of spatial resolution. Information on the location
of a detected feature is kept at a coarser level: it is not the precise location of a feature
that is relevant to the classification process, but its approximate location in relation to the
approximate location of other features also present in the image.

Units in the £ = 1 layer of network # 2 develop their couplings independently during the
training process. Different units thus specialize in the detection of different features within
their specific receptive fields. Since distinctive features of a digit can appear at several
different locations, it is useful to develop feature extractors capable of detecting a feature
anywhere in the input field. It is precisely such shift-invariant feature extractors which
emerge as a consequence of the weight-sharing constraint imposed on the £ = 1 layer of
network # 3. Each one of the £ = 1 planes is devoted to the detection of a unique feature,
everywhere in the input field.

Units in the £ = 2 layer of networks # 2 and # 3 receive information from receptive fields
containing 25 units in layer £ = 1, arranged in a 5x5 square. Contiguous receptive fields
are displaced by one unit in the £ = 1 plane. The further reduction from 8x8 to 4x4 units
increases the compression of the feature map. In network # 3, each unmit in the £ = 2
layer receives information from two receptive fields, one from each £ = 1 feature map. Such
units capture correlations between the different features detected by the £ = 1 layer. The
considerably larger generalization ability of network # 3 is due to the emergence of such
highér order feature extractors.

8 Conclusions

For a given training set of size m, the generalization ability Gm measures the probability of
obtaining a correct output when an input not in the training set is presented to a trained
network.

The number m* of examples needed to obtain good generalization ability is controlled by
the intrinsic entropy So of the chosen architecture, and can be decreased by reducing the
number Dy, of independent parameters needed to specify the network configuration.

The reduction of the dimensionality Dy results in a decrease in the number ng of functions
implementable by the chosen architecture. Such reduction must be planned with care, so
as not to destroy the ability to implement the desired input-output map.
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